
Butterfly
Microcontroller Handbook

HB4100-2.0

For performance characteristics, refer to the Butterfly Microcontroller
Performance Supplement: Publication no. SP4578 (for Commercial grade

specification) or SP4708 (for Industrial grade specification)

.
© Mitel Corporation 1998 Publication No.HB4100-2.0 Issue No.2.0 Rev.C March 1998

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose no
form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or
implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the
specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any
guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are
not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and
services provided subject to the Company's conditions of sale, which are available on request. All brand names and product names used in this publication are
trademarks, registered trademarks or tradenames of their respective owners.

Issue 2.0 Table of Contents

TABLE OF CONTENTS .. i - viii
Butterfly Microcontroller Handbook -i

LIST OF FIGURES ...ix

LIST OF TABLES...xiii

Document Conventions...xvii

Chapter 1 - Introduction

1.1 BUTTERFLY microcontroller overview 1-1
1.1.1 Features ... 1-1

1.2 Functional Block Description.. 1-2
1.2.1 BmILD Bus ... 1-2
1.2.2 ARM7 Processor (ARM7)... 1-2
1.2.3 BmILD Broadcast Module (BBM) ... 1-3
1.2.4 Phase Locked Loop (PLL).. 1-3
1.2.5 Power Control (POCO)... 1-3
1.2.6 Power-On Reset (POR).. 1-3
1.2.7 Programmable Peripheral Interface (PPI) 1-3
1.2.8 Memory/Peripheral Controller (MPC)................................... 1-4
1.2.9 Universal Asynchronous Receiver Transmitter (UART)........ 1-4
1.2.10 Interrupt Controller (INTC) ... 1-4
1.2.11 DMA Controller (DMAC)... 1-4
1.2.12 Timer/Counters (TIC) ... 1-5
1.2.13 Watchdog Timer (WDOG) .. 1-5

1.3 BUTTERFLY System Details ... 1-6
1.3.1 System Address Map ... 1-6
1.3.2 Address Map for internal I/O .. 1-7
1.3.3 System Clock Control... 1-8
1.3.4 System Reset... 1-8
1.3.5 System Bus Arbitration... 1-8
1.3.6 System Configuration Register .. 1-9
1.3.7 DMA ... 1-11
1.3.8 Interrupt Sources.. 1-12
1.3.9 Timer Counter (TIC) configuration 1-14

Table of Contents Issue 2.0

Chapter 2 - ARM7 Microprocessor

2.1 Overview ... 2-1
-ii Butterfly Microcontroller Handbook

2.2 Architecture ... 2-2

2.3 Programmer's Model ... 2-3
2.3.1 Operating Mode Selection... 2-3
2.3.2 Registers ... 2-3
2.3.3 Exceptions... 2-7
2.3.4 FIQ .. 2-7
2.3.5 IRQ .. 2-8
2.3.6 Abort.. 2-8
2.3.7 Software Interrupt.. 2-9
2.3.8 Undefined Instruction Trap .. 2-9
2.3.9 Vector Summary.. 2-10
2.3.10 Exception Priorities.. 2-10
2.3.11 Interrupt Latencies... 2-11
2.3.12 Reset ... 2-11

2.4 Instruction Set ... 2-12
2.4.1 Instruction Set Summary... 2-12
2.4.2 The Condition Field ... 2-13
2.4.3 Branch and Branch with Link (B, BL)................................. 2-14
2.4.4 Data Processing .. 2-15
2.4.5 PSR Transfer (MRS, MSR).. 2-24
2.4.6 Multiply and Multiply-Accumulate (MUL, MLA).................. 2-29
2.4.7 Single Data Transfer (LDR, STR) 2-31
2.4.8 Block Data Transfer (LDM, STM)....................................... 2-38
2.4.9 Single Data Swap (SWP) .. 2-45
2.4.10 Software Interrupt (SWI).. 2-47
2.4.11 Butterfly Coprocessor Support .. 2-50
2.4.12 Coprocessor Data Operations (CDP)................................ 2-50
2.4.13 Undefined Instruction .. 2-52

2.5 Instruction Cycle Operations ... 2-53
2.5.1 Cycle Types ... 2-53
2.5.2 Branch and Branch with Link... 2-54
2.5.3 Data Operations .. 2-55
2.5.4 Multiply and Multiply Accumulate 2-57
2.5.5 Load Register .. 2-58
2.5.6 Store Register ... 2-59
2.5.7 Load Multiple Registers... 2-59
2.5.8 Store Multiple Registers .. 2-61

Issue 2.0 Table of Contents

2.5.9 Data Swap.. 2-62
2.5.10 Software Interrupt and Exception Entry 2-63
2.5.11 Coprocessor Data Operation ... 2-64
Butterfly Microcontroller Handbook -iii

2.5.12 Undefined Instructions and Coprocessor Absent............... 2-65
2.5.13 Unexecuted Instructions... 2-65
2.5.14 Instruction Speed Summary... 2-65

Chapter 3 - Diagnostic Broadcast (BBM)

3.1 Overview .. 3-1
3.1.1 Diagnostic Broadcast ... 3-2

Chapter 4 - Phase Locked Loop (PLL)

4.1 Overview .. 4-1

4.2 Design features.. 4-1

4.3 Architecture.. 4-2
4.3.1 Interface Definitions.. 4-3
4.3.2 Operating Modes.. 4-4

4.4 PLL Operational Description .. 4-5
4.4.1 PLL for User Clock input. ... 4-5
4.4.2 PLL for Oscillator Clock input. .. 4-5
4.4.3 PLL Clock bypass... 4-6
4.4.4 PLL Operational details. ... 4-6

4.5 Oscillator Operational Description 4-7
4.5.1 Pin Descriptions ... 4-7
4.5.2 Selection of External Components....................................... 4-8
4.5.3 Electrical Specification: .. 4-12
4.5.4 Application Notes ... 4-13

Chapter 5 - Power Control (POCO)

5.1 Overview .. 5-1

5.2 Architecture.. 5-2

5.3 Operational Description ... 5-2
5.3.1 System Reset/Power Up .. 5-2
5.3.2 Run Mode Operation.. 5-3

Table of Contents Issue 2.0

5.3.3 Standby Mode Clock Control Operation 5-3
5.3.4 Low Power Sleep Mode... 5-3
5.3.5 Typical Configuration ... 5-4
-iv Butterfly Microcontroller Handbook

5.4 Programmer’s Model ... 5-5
5.4.1 Basic Register Operation .. 5-6

Chapter 6 - Programmable Peripheral Interface (PPI)

6.1 Overview ... 6-1

6.2 Architecture ... 6-1

6.3 Operational Description... 6-2

6.4 Programmer’s Model ... 6-4
6.4.1 Data Direction Register (DDR) .. 6-4
6.4.2 Data Input Register (DIR).. 6-5
6.4.3 Data Output Register (DOR) ... 6-5
6.4.4 The Control Status Register (CSR) 6-5

6.5 Timing relationship diagrams .. 6-6

6.6 External Interface .. 6-8

Chapter 7 - Memory/Peripheral Controller (MPC)

7.1 Overview ... 7-1

7.2 Architecture ... 7-2

7.3 Operational Description... 7-2
7.3.1 Memory Areas ... 7-3
7.3.2 Signal Relationships.. 7-4
7.3.3 Wait State Insertion ... 7-5
7.3.4 Instruction Fetches from Memory.. 7-8
7.3.5 Data Transfers to and from Memory 7-10
7.3.6 Endian configuration.. 7-12
7.3.7 Access to Non-Aligned Memory Addresses 7-14

7.4 Programmer’s Model ... 7-15
7.4.1 MPC Configuration Registers .. 7-15

7.5 External Interfaces .. 7-18

Issue 2.0 Table of Contents

7.6 Application Information: Designing a Memory System .. 7-19
7.6.1 Example system configuration ... 7-19
7.6.2 MPC Configuration Register Settings 7-22
Butterfly Microcontroller Handbook -v

7.6.3 Calculating Required Memory Timing Parameters............. 7-23

Chapter 8 - Universal Asynchronous Receiver/
Transmitter (UART)

8.1 Overview .. 8-1

8.2 Operational Description ... 8-3
8.2.1 Baud Rate Generation ... 8-3
8.2.2 Transmit Channel ... 8-4
8.2.3 Receive Channel .. 8-5
8.2.4 Receive Data Filter... 8-6
8.2.5 Data Transfer Methods ... 8-7
8.2.6 Manual Flow Control .. 8-8
8.2.7 Automatic Flow Control .. 8-8
8.2.8 Modem Flow Control .. 8-9
8.2.9 Null Modem Flow Control ... 8-10

8.3 Programmer’s Model.. 8-11
8.3.1 Register Descriptions ... 8-12

Chapter 9 - Interrupt Controller (INTC)

9.1 Introduction .. 9-1
9.1.1 Design Features ... 9-1

9.2 Architecture.. 9-2

9.3 Operational Description ... 9-3
9.3.1 Interrupt Controller Structure.. 9-3
9.3.2 Interrupt Processor... 9-3
9.3.3 FIQ Priority Encoder... 9-4
9.3.4 Bus Interface Control.. 9-4
9.3.5 External Interface ... 9-5

9.4 Programmer’s Model.. 9-5

9.5 Using the Interrupt Controller... 9-6

Table of Contents Issue 2.0

Chapter 10 - DMA Controller (DMAC)

10.1 Overview ... 10-1
-vi Butterfly Microcontroller Handbook

10.1.1 DMA Controller Trigger Selection 10-2

10.2 Operational Description... 10-3
10.2.1 Single Addressed (Fly-by) Transfer 10-3
10.2.2 Dual Addressed (Buffered) Transfer 10-6
10.2.3 Configuration ... 10-10

10.3 Programmer’s Model ... 10-13
10.3.1 DMA Registers .. 10-13

Chapter 11 - Timer/Counter (TIC)

11.1 Overview ... 11-1
11.1.1 Design Features .. 11-1

11.2 Architecture ... 11-2

11.3 Operational Description... 11-2
11.3.1 Prescaler Operation .. 11-3
11.3.2 Halt on Zero (Mode 0) ... 11-3
11.3.3 Free Running (Mode 1) ... 11-3
11.3.4 Reload on Trigger (Mode 2)... 11-4
11.3.5 Pulse Width Modulation (Mode 3) 11-4

11.4 Programmer’s Model ... 11-5
11.4.1 Register Descriptions .. 11-5

Chapter 12 - Watchdog Timer (WDOG)

12.1 Overview ... 12-1
12.1.1 Design Features .. 12-1

12.2 Architecture ... 12-1

12.3 Operational Description... 12-2
12.3.1 Timer Operation and Watchdog Restart Key..................... 12-2

12.4 Programmer’s Model ... 12-3
12.4.1 Control Register Format .. 12-3

Issue 2.0 Table of Contents

12.5 External Interface... 12-4

Appendix A - BmILD Bus Operation
Butterfly Microcontroller Handbook -vii

A.1 Introduction ... A-1
A.1.1 Bus Masters .. A-1
A.1.2 Bus Slaves .. A-2
A.1.3 System Arbitration and Multiple Bus Master Support.......... A-2

Appendix B - Physical and Electrical Specifications

B.1 Device I/O Summary... B-1

B.2 Pin Position Details ... B-3

B.3 Package Options... B-5

B.4 Electrical performance Characteristics. B-6

Appendix C - Further Information

C.1 Related Documents .. C-1

C.2 Worldwide Offices ... C-3

Appendix D - PCB Layout Guidelines

D.1 Considerations regarding Power distribution D-1

D.2 Considerations regarding PCB track lengths D-2

Table of Contents Issue 2.0
-viii Butterfly Microcontroller Handbook

Issue 2.0 List of Figures

LIST OF FIGURES
Butterfly Microcontroller Handbook -ix

Chapter 1 - Introduction
Figure 1-1: Functional Block Diagram - BUTTERFLY ... 1-2
Figure 1-3: Timer Counter connectivity ... 1-14

Chapter 2 - ARM7 Microprocessor
Figure 2-1: ARM7 Architecture ... 2-2
Figure 2-2: Register Organisation ... 2-5
Figure 2-3: Format of the Program Status Registers (PSRs) 2-6
Figure 2-4: Instruction Set Summary .. 2-12
Figure 2-5: Condition Codes ... 2-13
Figure 2-6: Branch Instructions ... 2-14
Figure 2-7: Data Processing Instructions .. 2-16
Figure 2-8: ARM Shift Operations ... 2-18
Figure 2-9: Logical Shift Left ... 2-19
Figure 2-10: Logical Shift Right .. 2-19
Figure 2-11: Arithmetic Shift Right .. 2-20
Figure 2-12: Rotate Right ... 2-21
Figure 2-13: Rotate Right Extended ... 2-21
Figure 2-14: PSR Transfer .. 2-28
Figure 2-15: Multiply Instructions .. 2-29
Figure 2-16: Single Data Transfer Instructions .. 2-32
Figure 2-17: Little Endian Offset Addressing .. 2-34
Figure 2-18: Block Data Transfer Instructions ... 2-38
Figure 2-19: Post-Increment Addressing .. 2-40
Figure 2-20: Pre-Increment Addressing .. 2-40
Figure 2-21: Post-Decrement Addressing ... 2-41
Figure 2-22: Pre-Decrement Addressing .. 2-41
Figure 2-23: Swap Instruction ... 2-45
Figure 2-24: Software Interrupt Instruction ... 2-47
Figure 2-25: Coprocessor Data Operation Instruction 2-50
Figure 2-26: Undefined Instruction ... 2-52

Chapter 3 - Diagnostic Broadcast (BBM)
Figure 3-1: B ILD cycle and bus master details on 'Bdiag pins 3-2

List of Figures Issue 2.0

Chapter 4 - Phase Locked Loop (PLL)
Figure 4-1: Architecture .. 4-2
Figure 4-2: PLL Operational ranges .. 4-4
-x Butterfly Microcontroller Handbook

Figure 4-3: PLL circuit for User supplied clock. ... 4-5
Figure 4-4: PLL circuit for Crystal supplied clock. ... 4-5
Figure 4-5: PLL circuit for PLL bypass mode. ... 4-6
Figure 4-6: External Components ... 4-8

Chapter 5 - Power Control (POCO)
Figure 5-1: Block Diagram of POCO ... 5-2

Chapter 6 - Programmable Peripheral Interface (PPI)
Figure 6-1: PPI Module Block Diagram ... 6-1
Figure 6-2: Data Direction Register (Read/Write) ... 6-4
Figure 6-3: Data Input Register (Read Only) .. 6-5
Figure 6-4: Data Output Register (Read/Write) .. 6-5
Figure 6-5: 8-Bit Port Control Status Register (CSR) .. 6-6
Figure 6-6: Port Data Output (Modes 1 and 2) ... 6-7
Figure 6-7: Port Data Input (Modes 1 and 2) .. 6-7

Chapter 7 - Memory/Peripheral Controller (MPC)
Figure 7-1: MPC Functional Blocks ... 7-2
Figure 7-2: MPC External Interface Signals .. 7-4
Figure 7-3: Effect of Wait and Stop States on a Read Access 7-6
Figure 7-4: MPC Externally Generated Wait State Insertion 7-8
Figure 7-5: Instruction Fetch from 32-bit Memory (one wait state) 7-9
Figure 7-6: Instruction Fetch from 16-bit Memory (one wait state) 7-9
Figure 7-7: Instruction Fetch from 8-bit Memory (one wait state) 7-10
Figure 7-8: Writing to Individual Bytes of Memory .. 7-12
Figure 7-9: Little Endian addresses of bytes within words 7-13
Figure 7-10: Big Endian addresses of bytes within words 7-13
Figure 7-11: Single Register Slice .. 7-15
Figure 7-12: Configuration Register Reset State .. 7-17
Figure 7-13: Example Little-Endian System Configuration 7-20
Figure 7-14: Example Big-Endian System Configuration 7-21
Figure 7-15: Example MPC Configuration Register Settings 7-23
Figure 7-16: Interfacing the MPC to SRAM ... 7-24

Issue 2.0 List of Figures

Chapter 8 - Universal Asynchronous Receiver/Transmitter (UART)
Figure 8-1: Block Diagram .. 8-2
Figure 8-2: The Clock Chain ... 8-3
Butterfly Microcontroller Handbook -xi

Figure 8-3: Serial Transmission Example ... 8-4
Figure 8-4: Receive data filter action .. 8-6
Figure 8-5: Configuration 0 - Modem Flow Control ... 8-9
Figure 8-6: Configuration 1 - Null modem Flow Control 8-10

Chapter 9 - Interrupt Controller (INTC)
Figure 9-1: Interrupt Controller ... 9-2
Figure 9-2: FIQ Encoded Priority Register .. 9-4

Chapter 10 - DMA Controller (DMAC)
Figure 10-1: Interface Diagram ... 10-2
Figure 10-2: Architecture of Single-Addressed DMA .. 10-3
Figure 10-3: Edge Triggered Block Transfer ... 10-4
Figure 10-4: Level Triggered Block Transfer ... 10-4
Figure 10-5: Edge Triggered Packet Transfer (Size = 2) 10-5
Figure 10-6: Software Triggered Block Transfer .. 10-5
Figure 10-7: Architecture of Dual Addressed DMA ... 10-6
Figure 10-8: Edge Triggered Block Transfer ... 10-7
Figure 10-9: Level Triggered Block Transfer ... 10-7
Figure 10-10: Edge Triggered Packet Transfer ... 10-8
Figure 10-11: Software Triggered Block Transfer .. 10-8
Figure 10-12: Software Triggered Packet Transfer .. 10-9

Chapter 11 - Timer/Counter (TIC)
Figure 11-1: Timer/Counter Architecture .. 11-2
Figure 11-2: Control/Status Register .. 11-6

Chapter 12 - Watchdog Timer (WDOG)
Figure 12-1: Watchdog Structure .. 12-1
Figure 12-2: Control Register Format ... 12-3
Figure 12-3: Timing Relationship Between nWden and Sclk 12-4

Appendix B - Physical and Electrical Specifications
Figure B-1: BUTTERFLY 144 Plastic Quad Flat Pack ..B-5

List of Figures Issue 2.0
-xii Butterfly Microcontroller Handbook

Issue 2.0 List of Tables

LIST OF TABLES
Butterfly Microcontroller Handbook -xiii

Chapter 1 - Introduction
Table 1-1: Address Map .. 1-6
Table 1-2: Module Mapping ... 1-7
Table 1-3: Priority Levels ... 1-9
Table 1-4: Register View ... 1-9
Table 1-5: System Configuration Register .. 1-10
Table 1-6: DMAC Trigger Selection ... 1-11
Table 1-7: Interrupt Source Channels ... 1-12

Chapter 2 - ARM7 Microprocessor
Table 2-1: The Mode Bits .. 2-6
Table 2-2: Vector Summary ... 2-10
Table 2-3: ARM Data Processing Instructions .. 2-17
Table 2-4: Addressing Mode Names ... 2-44
Table 2-5: Branch Instruction Cycle Operations .. 2-54
Table 2-6: Data Operation Instruction Cycle Operations 2-56
Table 2-7: Multiply Instruction Cycle Operations ... 2-57
Table 2-8: Load Register Instruction Cycle Operations 2-58
Table 2-9: Store Register Instruction Cycle Operations 2-59
Table 2-10: Load Multiple Registers Instruction Cycle Operations 2-60
Table 2-11: Store Multiple Registers Instruction Cycle Operations 2-61
Table 2-12: Data Swap Instruction Cycle Operations 2-62
Table 2-13: Software Interrupt Instruction Cycle Operations 2-63
Table 2-14: Coprocessor Data Operation Instruction Cycles 2-64
Table 2-15: Undefined Instruction Cycle Operations 2-65
Table 2-16: Unexecuted Instruction Cycle Operations 2-65
Table 2-17: ARM Instruction Speed Summary .. 2-66

Chapter 3 - Diagnostic Broadcast (BBM)
Table 3-1: Encoding of Bus Master ID for Diagnostic Broadcast 3-2
Table 3-2: Encoding of Cycle Type for Diagnostic Broadcast 3-3

Chapter 4 - Phase Locked Loop (PLL)
Table 4-1: Signal definitions and Names ... 4-3
Table 4-2: Clock Modes .. 4-3
Table 4-3: Specification (3V and 5V nominal) ... 4-12

List of Tables Issue 2.0

Table 4-4: Amplifier Specification: Vdd=5V (nom) ... 4-12
Table 4-5: Amplifier Specification: Vdd=3V(nom) .. 4-12
-xiv Butterfly Microcontroller Handbook

Chapter 5 - Power Control (POCO)
Table 5-1: Programmers Register View ... 5-5
Table 5-2: Module Clock Enable Register (MCER) ... 5-5

Chapter 6 - Programmable Peripheral Interface (PPI)
Table 6-1: Programmers Register View ... 6-4
Table 6-2: PPI Module External Pin List Description 6-8

Chapter 7 - Memory/Peripheral Controller (MPC)
Table 7-1: Data Read from Memory .. 7-11
Table 7-2: Data Write to Memory .. 7-12
Table 7-3: Non-Aligned Address Accesses ... 7-14
Table 7-4: Programmer’s Register View .. 7-15
Table 7-5: MPC nScs External Decode Map ... 7-15
Table 7-6: Configuration Register Bit Actions .. 7-16
Table 7-7: External Pin-Out Description .. 7-18
Table 7-8: MPC Timing Parameters .. 7-25
Table 7-9: Typical SRAM Parameters (with formulae) 7-26

Chapter 8 - Universal Asynchronous Receiver/Transmitter (UART)
Table 8-1: Interface Description .. 8-2
Table 8-2: Program Register View ... 8-11
Table 8-3: Serial Control Register (CR) - Read / Write, + 0x000 8-12
Table 8-4: Serial Mode Register (MR) - Read / Write, + 0x004 8-13
Table 8-5: Baud Rate Register (BRR) - Read / Write, + 0x008 8-13
Table 8-6: Serial Status Register (SR) - Read, + 0x00C 8-14
Table 8-7: Transmit Register (TR) - Write,+ 0x010 .. 8-14
Table 8-8: Receive Register (RR) - Read, + 0x010 8-15
Table 8-9: Modem Control Register (MCR) - Read / Write,+0x 014 8-15
Table 8-10: Modem Status Register - Read, + 0x01C 8-16

Chapter 9 - Interrupt Controller (INTC)
Table 9-1: Register Map .. 9-5

Issue 2.0 List of Tables

Chapter 10 - DMA Controller (DMAC)
Table 10-1: DMA Controller Signals .. 10-2
Table 10-2: DMA Controller Registers .. 10-13
Butterfly Microcontroller Handbook -xv

Table 10-3: DMA Controller Channel Registers .. 10-14
Table 10-4: Channel Control Register (CCR) - offset +0x0 10-15
Table 10-5: Channel Status Register (CSR) - offset +0x0 10-16
Table 10-6: Packet Size Register (PSR) - offset +0x4 10-17
Table 10-7: Transfer Count Registers - offset +0x8 10-17
Table 10-8: Address Registers - offset +0xC .. 10-18
Table 10-9: DMA Controller Status Register (DSR) - offset +0x200 10-18

Chapter 11 - Timer/Counter (TIC)
Table 11-1: Timer/Counter Address Map .. 11-5
Table 11-2: Control/Status Register bit descriptions 11-6

Chapter 12 - Watchdog Timer (WDOG)
Table 12-1: Register Map .. 12-3

Appendix B - Physical and Electrical Specifications
Table B-1: Device I/O Summary .. B-1

Appendix C - Further Information
Table C-1: Related Documents ...C-1

List of Tables Issue 2.0
-xvi Butterfly Microcontroller Handbook

Issue 2.0 Document Conventions
Butterfly Microcontroller Handbook -xvii

Document Conventions

a. Numbers prefixed with ’0x’ are hexadecimal

b. Register, flag and signal names are all in bold type

c. External signal names begin with a Capital letter (which are prefixed with an "n" if
active low), all internal signal names are in lower case.

d. All active low signal names begin with an ’n’

e. Bit positions within a Register Field are represented within square brackets [n]

f. "Reserved": When associated with a register field, the location should not be
written to, or read from. When used in a bit field amongst other
referenced fields, the default value must be maintained during write
operations.

g. "Low","clear": When associated with a signal or Bit field, refers to a logical
condition 0.

h. "High","set": When associated with a signal or Bit field, refers to a logical
condition 1

 Document Conventions Issue 2.0
-xviii Butterfly Microcontroller Handbook

Chapter 1 - Introduction
Butterfly Microcontroller Handbook 1-1

1.1 BUTTERFLY microcontroller overview

This book describes the BUTTERFLY microcontroller which is one of a range of products
designed by Mitel to offer high performance processing whilst consuming very little
power. This device is an entry level microcontroller targeted for emerging markets such
as digital phones, set-top boxes and games where cost sensitivity is the utmost priority.
The BUTTERFLY is object-code compatible with earlier ARM products and fully
supported with industry standard cross development tools available on both PC and Sun
platforms, including the ARM toolkit (from Mitel), a development board (MAP-1), and
software routines for on-chip functions.

This is one of a series of integrated controllers designed around the BµILD (Bus for
µController Integration in Low-power Designs) modular architecture. This on-chip 32-bit
bus architecture has been developed to facilitate fully-testable, reliable and debuggable
integrated processor products. The BµILD architecture means that Mitel can produce
right-first-time complex Application Specific Standard Products (ASSP's) efficiently,
meeting the fast time to market needs of customers in the emerging embedded
processing markets.

BUTTERFLY is fabricated in 0.7µm CMOS technology and designed to operate at
25MHz (5 Volts) or 15MHz (3 Volts) over a commercial temperature range (0-70˚C). At 5
Volts/25MHz, up to 22 MIPS (Dhrystone 2.1) of processing power is available and at 3
Volts/15MHz 13 MIPS is available.

1.1.1 Features

BUTTERFLY, available in a 144QFP package, incorporates an ARM7 processor core, the
industry's 32 bit processor leader in performance efficiency (MIPS/Watt), to which Mitel
has added:

• Serial I/O

• Power management control circuitry

• A programmable memory interface

• support for 8,16 and 32-bit data transfers and memory widths

• Flexible address interface – providing 4 memory areas, each of 4 Mbytes

• Flexible, 15 channel interrupt controller with programmable priority

• Watchdog Timer and four 32-bit timer/counters

• 8-bit wide Programmable Peripheral Interface (PPI)

• A Direct Memory Access (DMA) controller providing 2 fly-by channels or 1 memory
channel

Chapter 1 - Introduction Issue 2.0
1-2 Butterfly Microcontroller Handbook

Figure 1-1: Functional Block Diagram - BUTTERFLY

1.2 Functional Block Description

1.2.1 BµILD Bus

This is a modular bus architecture and specification, via which all on-chip modules
interface to each other. Such modules can either be bus masters or slaves. A bus master
can initiate a bus access, generate addresses and control read or write transfers. A bus
slave responds to a bus master request when selected by the system address decoder,
and may, if required, assert a wait signal on the bus until the relevant data transfer has
been completed. All internal data transfers on the BµILD bus are single cycle.

BUTTERFLY has three modules that are capable of operating as Bus masters. These
are the ARM7 Core, DMAC and BBM, described below.

1.2.2 ARM7 Processor (ARM7)

32-bit RISC processor core, object-code compatible with all ARM6 and ARM7 based
products. The ARM7 is a fully static design and as such consumes dynamic power only
when clocks are active.

Issue 2.0 Chapter 1 - Introduction

1.2.3 BµILD Broadcast Module (BBM)

During application debugging, the BBM provides information about the activity on the
internal BµILD bus, thus providing better observability of the device. It also holds the
Butterfly Microcontroller Handbook 1-3

System Configuration Register and controls the bus mode (e.g. RESET, ERROR,
RUN etc.).

1.2.4 Phase Locked Loop (PLL)

This balances the mark-space ratio of the incoming clock and reduces skew between
clock and I/O signals, consequently improving set-up and hold margins of Data and
Control signals. The PLL is also capable of deriving a highly stable system clock from a
low cost off-chip crystal.

1.2.5 Power Control (POCO)

Each on-chip module has its own clock source network. The POCO permits any or all of
these clock networks to be disabled under software control to minimise power
consumption in any particular module. Other power control features can be found on
certain on-chip functions to provide further power-management optimization. For
example the processor can be put into “SLEEP” mode so that no CPU activity occurs
until reactivated with an interrupt.

1.2.6 Power-On Reset (POR)

This circuitry controls the hardware POR signal to ensure that all internal registers are
set to a known state and all bus drivers are initialised to a tri-state condition at power-up.
An external reset line is also provided.

1.2.7 Programmable Peripheral Interface (PPI)

8 I/O pins are provided which may be bit or byte addressed and configured in a latched
or transparent mode. When in byte mode, buffer full/empty flags are available which can
be used to generate an interrupt to the ARM7 processor.

Chapter 1 - Introduction Issue 2.0

1.2.8 Memory/Peripheral Controller (MPC)

The MPC ensures the correct multiplexing of data is applied for bus transfers between
8,16 or 32- bit on-chip or off-chip peripherals. Four different contiguous memory areas
1-4 Butterfly Microcontroller Handbook

are available, each with an address range of 4Mbytes, with individually programmable
wait and stop state generation. A “SWAP” function allows memory area “1”, which is
addressed at system reset, to be switched with memory area “4”. This allows, for
example, booting from ROM and then switching memory area 1 to address SRAM so
that time-critical software and interrupt routines can operate from fast memory.

1.2.9 Universal Asynchronous Receiver Transmitter (UART)

Each full duplex asynchronous channel provides an RS232 type interface, which
supports either a XON/XOFF software protocol, or hardware RTS/CTS handshake
mechanism. The Receive and Transmit channels are double buffered. Each UART may
be polled or use an interrupt scheme for BµILD bus transfers. An internal Baud rate
generator can provide selectable data rates derived from on- or off-chip sources for an
Rx/Tx pair. Directly triggered DMA transfers with the UART are also possible without the
need for CPU intervention.

1.2.10 Interrupt Controller (INTC)

The ARM7 core accepts two types of interrupt: Normal (IRQ) and Fast (FIQ). All
Interrupts on Butterfly can be switched between types, depending upon the relative
priorities required.

The INTC is the central control logic that decodes the priority level and handles interrupt
request signals from a total of 15 sources. External Interrupts can be set for edge or level
sensitivity with a polarity option. To minimise interrupt latency, there is a hard-wired FIQ
priority scheme for each channel, alternatively this can be ignored and the priority
assessment handled in software.

1.2.11 DMA Controller (DMAC)

Two DMA engines are available on Butterfly. These may also be configured as a pair to
provide a memory to memory DMA capability between any locations in the ARM7
memory space. Alternatively they may be used independently for Fly-by transfers
between off-chip requestors and either on-chip or off-chip locations.

Single or multiple byte transfers (Demand or Burst Mode) are supported and may be
word, half-word or byte wide.

Issue 2.0 Chapter 1 - Introduction

1.2.12 Timer/Counters (TIC)

Four independent 32-bit timer/counters, each with an 8-bit prescaler capability are
provided (Timers 1A, 1B, 2A and 2B). These are synchronous to the system clock and
Butterfly Microcontroller Handbook 1-5

may be polled or set-up to generate interrupts on over-run and auto-reload. Timer 1A is
permanently enabled. Timer 1B has an enable control input, Timers 2A and 2B, which
both have enable inputs, can be configured as a pair to generate a PWM output that is
connected to the PWM output pin.

1.2.13 Watchdog Timer (WDOG)

The function of the Watchdog Timer (WDOG) is to detect hardware lock-ups or run-time
software errors. It performs this function by requiring the processor to write to one of its
registers periodically. Should this not occur, the Watchdog will timeout and reset the
system. This ensures that hardware/software lock-ups are recoverable.

Chapter 1 - Introduction Issue 2.0

1.3 BUTTERFLY System Details

1.3.1 System Address Map
1-6 Butterfly Microcontroller Handbook

The system address map for the BUTTERFLY device is shown below in Table 1-1.

* Reflected address areas will produce images of data in the original memory area addresses
e.g. External-1 will repeat at addresses 0040 0000, 0080 0000, 00C0 0000 etc.

See section 1.3.1.2 overleaf

Table 1-1: Address Map

The Internal I/O memory area is subdivided into 32 sub-regions extending from xE000
0000 to xE001 FFFF and assigned to the on-chip modules. Those modules capable of
generating addresses are configured as ‘bus masters’ and the remaining modules as
‘bus slaves’. The bus masters are:-

The ARM7 Processor

The BµILD Broadcast Module (BBM)

The DMA Controller

As only one bus master can be in control of the BµILD bus at any one time, they are
prioritised and given access to the bus in accordance with the arbitration system.

Address Range Function

0x0000 0000 >> 003F FFFF External-1:nScs0/nScs3#

0x0040 0000 >> 1FFF FFFF External-1 reflected*

0x2000 0000 >> 203F FFFF External-2:nScs1

0x2040 0000 >> 3FFF FFFF External-2 reflected*

0x4000 0000 >> 403F FFFF External-3:nScs2

0x4040 0000 >> 5FFF FFFF External-3 reflected*

0x6000 0000 >> 603F FFFF External-4:nScs3/nScs0#

0x6040 0000 >> 7FFF FFFF External-4 reflected*

0x8000 0000 >> 9FFF FFFF Reserved

0xA000 0000 >> BFFF FFFF Reserved

0xC000 0000 >> DFFF FFFF Reserved

0xE000 0000 >> E001 FFFF Internal I/O

0xE002 0000 >> FFFF FFFF Reserved

Issue 2.0 Chapter 1 - Introduction

1.3.1.2 SWAP Function

The System Configuration Register (section 1.3.6) includes a control bit that swaps
the address memory areas for chip selects nScs0 and nScs3 . This allows ROM devices
Butterfly Microcontroller Handbook 1-7

to be used for ARM bootstrap code and then allow other memory (e.g. fast SRAM) to
reside in low memory address locations (including those where exception vector tables
reside), once the users application code is up and running. Note if SWAP is used, the
set-up parameters for the relative external devices may also need reprogramming as
described in section 7.6.2

1.3.2 Address Map for internal I/O

Table 1-2 shows how registers for the System and individual modules are allocated
memory areas within the Internal I/O memory space. Refer to the relevant chapter for
further register descriptions.

Nb: Attempts to access an address that has no mapped register, or one that is
designated as reserved, are likely to result in a run-time bus error.

Table 1-2: Module Mapping

Address Range Function Address Range Function

0xE000 0000- > 1FFF Reserved 0xE000 D000- > DFFF Reserved

0xE000 2000- > 2FFF System Configuration
(including BBM)

0xE000 E000- > EFFF Timer 1

0xE000 3000- > 3FFF Reserved 0xE000 F000- > FFFF Timer 2

0xE000 4000- > 4FFF Watchdog Timer 0xE001 0000- > 1FFF Reserved

0xE000 5000- > 5FFF Power Control 0xE001 2000- > 2FFF PPI

0xE000 6000- > 6FFF Interrupt Controller 0xE001 3000- > 7FFF Reserved

0xE000 7000- >7FFF Reserved 0xE001 8000- > 8FFF UART 1

0xE000 8000- > 8FFF Memory/Peripheral
Controller

0xE001 9000- > 9FFF UART 2

0xE000 9000- > BFFF Reserved 0xE001 A000- > AFFF Reserved
(Internal)

0xE000 C000- > CFFF DMA controller 0xE001 B000>
FFFF FFFF

Reserved

Chapter 1 - Introduction Issue 2.0

1.3.3 System Clock Control

Extensive control of the system clock distribution is provided by a Power Control (POCO)
module. This provides both sleep and programmable standby modes. See Chapter 5 -
1-8 Butterfly Microcontroller Handbook

Power Control (POCO) for more details.

1.3.4 System Reset

The microcontroller system may be reset by a number of mechanisms:

• At power-up

• via an external reset pin nSreset

• via the watchdog timing out

In each case the initialization sequence is the same.

• The microcontroller enters RESET mode, resetting all internal modules, including the
ARM CPU

• The ARM7 processor is granted the bus and proceeds to fetch its next instruction
from address location 0x0000 0000.

• The MPC defaults to accessing external area 1 as slow memory (with 15 wait states
and 15 stop states, and with a width defined by pins Sr_Size<1:0> .

• Following successful Butterfly initialisation, the user should configure the MPC
appropriate to the external devices connected to it.

IMPORTANT NOTE: Immediately after power-up and/or a rising edge of nSreset , Sclk
should be clocked for at least 2 ARM processor cycles to bring the core into a stable
state. If this is not performed then several mA can be consumed by the ARM core until
these clocks have been provided.

1.3.5 System Bus Arbitration

The system contains three separate bus masters, (Modules capable of generating
addresses), these being the ARM7 Processor, the DMA controller, and the BµILD
Broadcast Module (BBM). The arbitration system uses a “highest priority” scheme. Bus
masters request use of the Bus from the Arbiter. The highest priority bus master is
granted the bus for as long as it wishes irrespective of the demands of lower priority bus
masters. The priority levels implemented are as shown in Table 1-3

Issue 2.0 Chapter 1 - Introduction

.

Priority Level Function
Butterfly Microcontroller Handbook 1-9

The BBM block is primarily used for manufacturing test and system debug and hence
requires the highest priority level, although it is not active during normal system
operation. The ARM7 processor is bandwidth intensive, if not given the lowest priority
then any lower priority master would rarely get access to the bus. A further feature allows
the ARM to have priority on receipt of a FIQ interrupt. In this instance the ARM may be
optionally promoted in priority to be above the DMA for the duration of any FIQ. Bit 1 in
the System Configuration Register enables this function.

1.3.6 System Configuration Register

After power-up, this register is should be initialised with suitable values for desired
operation of the device. It also determines whether the Diagnostic broadcast facility is
enabled or not.

The System Configuration Register controls the operation of various system functions.

• The SWAP bit controls the operation of nScs0 and nScs3 as described in section 1.3.1

• Bit 1 controls the operation of the bus arbitration unit as described in section 1.3.5

• Bit 2 is reserved

• Bits 3-5 control the selection of the DMA request input to the DMA controller described in
Chapter 10 - DMA Controller (DMAC)

• Bits 6-7 select the UART’s to work in either external clock (1) or DCD (0) mode.

• Bits 8-31 are reserved and should be programmed to 0.

0- Highest BBM

1 DMA

2- Lowest ARM7

Table 1-3: Priority Levels

Address Register view Function

0xE000 2000 Reserved (must remain ‘0’) RW

0xE000 2004 System Configuration Register RW

Table 1-4: Register View

Chapter 1 - Introduction Issue 2.0

Bit Function
Reset
1-10 Butterfly Microcontroller Handbook

Table 1-5: System Configuration Register

Value

0 SWAP [1] swaps external nScs0 and nScs3 addresses 0

1 Arbitration ARM (FIQ mode) promote 0

2 Reserved (must be 0) 0

3-5 DMA mux-1 channel select: see below 0

6 UART1 [1] external clock / [0] nDCD enable pin 0

7 UART2 [1] external clock / [0] nDCD enable pin 0

8-31 Reserved (must be 0) 0

Issue 2.0 Chapter 1 - Introduction

1.3.7 DMA

The following table describes the encoding system for allocating DMA channels to
sources that have a DMA capability. More details can be found in Chapter 10 - DMA
Butterfly Microcontroller Handbook 1-11

Controller (DMAC)

Table 1-6: DMAC Trigger Selection

Channel Select
System

Configuration Register
Source Channel

Bit 5 Bit 4 Bit 3

0 0 0 External Dreq-1

0 0 1 UART 2 Receive

0 1 0 PPI 1 IBF

0 1 1 UART 1 Receive

1 0 0 External Interrupt-1

1 0 1 UART 2 Transmit

1 1 0 PPI 1 OBE

1 1 1 UART 1 transmit

Chapter 1 - Introduction Issue 2.0

1.3.8 Interrupt Sources

The following is the channel allocation number for each Bµild module. More information
on interrupt control may be found in Chapter 9 - Interrupt Controller (INTC).
1-12 Butterfly Microcontroller Handbook

Channel Interrupt Source Function

0
(highest priority)

WDOG “Bark”

1 Reserved

2 Reserved

3 DMAC

4 Reserved

5 Reserved

6 TIC1 Time out A

7 TIC1 Time out B

8 External Interrupt 1 User defined

9 Reserved

10 Reserved

11 PPI IBF

12 PPI OBE

13 Reserved

14 UART 1 Error

15 UART 1 RBF

16 UART 1 TBE

17 Reserved

18 TIC2 Time out A

19 TIC2 Time out B

20 External Interrupt 2 User defined

21 Reserved

22 Reserved

23 Reserved

Table 1-7: Interrupt Source Channels

Issue 2.0 Chapter 1 - Introduction

24 Reserved

Channel Interrupt Source Function
Butterfly Microcontroller Handbook 1-13

The four timer interrupts (channels 6, 7, 18, and 19) are edge triggered. All other
internally generated interrupt sources are level sensitive, active HIGH.

Directly driven external interrupts are user defined, and can be set up for either Edge or
Level sensitivity. For these, the edge/level and polarity registers need to be set up to
match the required operation. The values that need to be written are:

edge/level 0x000C00C0 external interrupts are level sensitive

0x001C01C0 external interrupts are edge sensitive

polarity 0xFFFFFFFF external interrupts are active high or

rising edge triggered

0xFFEFFEFF external interrupts are active low or

falling edge triggered

25 Reserved

26 UART 2 Error

27 UART 2 RBF

28 UART 2 TBE

29 Reserved

30 Reserved

31(lowest priority) Reserved

Table 1-7: Interrupt Source Channels (Continued)

Chapter 1 - Introduction Issue 2.0

1.3.9 Timer Counter (TIC) configuration
1-14 Butterfly Microcontroller Handbook

Figure 1-3: Timer Counter connectivity

Timer Counters “1” and “2” are connected as shown in Figure 1-3: Timer Counter
connectivity. Please refer to Chapter 11 - Timer/Counter (TIC) for more details

BµILD interface

ten1A

ten2A

ten2B

Sclk

Device Interface

int1A

int1B

int2A

int2B

Tpwm

VDD

ten1B

Timer 1

Timer 2Ten2

Ten1

pwm

Chapter 2 - ARM7 Microprocessor
Butterfly Microcontroller Handbook 2-1

2.1 Overview

The ARM7 is part of the Advanced RISC Machines (ARM) family of general purpose 32-
bit microprocessors, which offer very low power consumption and low price for high
performance devices. The architecture is based on Reduced Instruction Set Computer
(RISC) principles, and the instruction set and related decode mechanism are much
simpler in comparison with microprogrammed Complex Instruction Set Computers. This
results in a high instruction throughput and impressive real-time interrupt response from
a small and cost-effective chip.

The instruction set comprises eleven basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and multiplier to
perform high-speed operations on the data in a bank of 31 registers, each 32 bits wide;

• Three classes of instruction control data transfer between memory and the registers, one
optimised for flexibility of addressing, another for rapid context switching and the third for
swapping data;

• Three instructions control the flow and privilege level of execution; and

• Three types are dedicated to the control of external coprocessors which allow the
functionality of the instruction set to be extended in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is
also straightforward, unlike some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typically, while one instruction is being executed, its successor is
being decoded, and a third instruction is being fetched from memory.

ARM7 is a fully static CMOS implementation of the ARM which allows the clock to be
stopped in any part of the cycle with extremely low residual power consumption and no
loss of state.

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.2 Architecture
2-2 Butterfly Microcontroller Handbook

Figure 2-1: ARM7 Architecture

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.3 Programmer's Model

ARM7 supports a variety of operating configurations. One is controlled by an input and is
known as the hardware configuration. Others may be controlled by software and these
Butterfly Microcontroller Handbook 2-3

are known as operating modes. On Butterfly’s internal Bµild bus, the ARM7’s lowest
BIGEND control bit, which determines whether the lowest addressed byte is least of
most significant in a multi-byte word, is set (i.e. Little Endian). However for off-chip
accesses, this may be programmed through the MPC using the Sbigendian pin. Please
see Chapter 6 for further information.

2.3.1 Operating Mode Selection

ARM7 has a 32 bit data bus and a 32 bit address bus. The data types the processor
supports are Bytes (8 bits) and Words (32 bits), where words must be aligned to four
byte boundaries. Instructions are exactly one word, and data operations (e.g. ADD) are
only performed on word quantities. Load and store operations can transfer either bytes or
words.

ARM7 supports six modes of operation:

[1] User mode (usr): the normal program execution state

[2] FIQ mode (fiq): designed to support a data transfer or channel process

[3] IRQ mode (irq): used for general purpose interrupt handling

[4] Supervisor mode (svc): a protected mode for the operating system

[5] Abort mode (abt): entered after a data or instruction prefetch abort

[6] Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by external
interrupts or exception processing. Most application programs will execute in User mode.
The other modes, known as privileged modes, will be entered to service interrupts or
exceptions or to access protected resources.

2.3.2 Registers

The processor has a total of 37 registers made up of 31 general 32 bit registers and 6
status registers. At any one time 16 general registers (R0 to R15) and one or two status
registers are visible to the programmer. The visible registers depend on the processor
mode and the other registers (the banked registers) are switched in to support IRQ, FIQ,
Supervisor, Abort and Undefined mode processing. The register bank organisation is
shown in Figure 2-2: Register Organisation. The banked registers are shaded in the
diagram.

Chapter 2 - ARM7 Microprocessor Issue 2.0

In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15 are
general purpose and may be used to hold data or address values. Register R15 holds
the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2] contain
2-4 Butterfly Microcontroller Handbook

the PC. A seventeenth register (the CPSR - Current Program Status Register) is also
accessible. It contains condition code flags and the current mode bits and may be
thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch
and Link instruction is executed. It may be treated as a general purpose register at all
other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to
hold the return values of R15 when interrupts and exceptions arise, or when Branch and
Link instructions are executed within interrupt or exception routines.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
programs will not need to save any registers. User mode, IRQ mode, Supervisor mode,
Abort mode and Undefined mode each have two banked registers mapped to R13 and
R14. The two banked registers allow these modes to each have a private stack pointer
and link register. Supervisor, IRQ, Abort and Undefined mode programs which require
more than these two banked registers are expected to save some or all of the caller's
registers (R0 to R12) on their respective stacks. They are then free to use these registers
which they will restore before returning to the caller. In addition there are also five SPSRs
(Saved Program Status Registers) which are loaded with the CPSR when an exception
occurs. There is one SPSR for each privileged mode.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

General Registers and Program Counter Modes
User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32
Butterfly Microcontroller Handbook 2-5

Figure 2-2: Register Organisation

The format of the Program Status Registers is shown in Figure 2-3: Format of the
Program Status Registers (PSRs). The N, Z, C and V bits are the condition code flags.
The condition code flags in the CPSR may be changed as a result of arithmetic and
logical operations in the processor and may be tested by all instructions to determine if
the instruction is to be executed.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

Chapter 2 - ARM7 Microprocessor Issue 2.0

flags control
2-6 Butterfly Microcontroller Handbook

Figure 2-3: Format of the Program Status Registers (PSRs)

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it is
set and the F bit disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4 bits
(M[4:0]) are the mode bits, and these determine the mode in which the processor
operates. The interpretation of the mode bits is shown in Table 2-1: The Mode Bits. Not
all combinations of the mode bits define a valid processor mode. Only those explicitly
described shall be used.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as the
control bits. The control bits will change when an exception arises and in addition can be
manipulated by software when the processor is in a privileged mode. Unused bits in the
PSRs are reserved and their state shall be preserved when changing the flag or control
bits. Programs shall not rely on specific values from the reserved bits when checking the
PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible register set

 10000 User PC,R14..R0 CPSR

 10001 FIQ PC,R14_fiq..R8_fiq,R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC,R14_irq..R13_irq,R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC,R14_svc..R13_svc,R12..R0 CPSR, SPSR_svc

 10111 Abort PC,R14_abt..R13_abt,R12..R0 CPSR, SPSR_abt

 11011 Undefined PC,R14_und..R13_und, R12..R0 CPSR, SPSR_und

Table 2-1: The Mode Bits

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.3.3 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to be
broken, so that (for example) the processor can be diverted to handle an interrupt from a
Butterfly Microcontroller Handbook 2-7

peripheral. The processor state just prior to handling the exception must be preserved so
that the original program can be resumed when the exception routine has completed.
Many exceptions may arise at the same time.

ARM7 handles exceptions by making use of the banked registers to save state. The old
PC and CPSR contents are copied into the appropriate R14 and SPSR and the PC and
mode bits in the CPSR bits are forced to a value which depends on the exception.
Interrupt disable flags are set where required to prevent otherwise unmanageable
nestings of exceptions. In the case of a re-entrant interrupt handler, R14 and the SPSR
should be saved onto a stack in main memory before re-enabling the interrupt; when
transferring the SPSR register to and from a stack, it is important to transfer the whole 32
bit value, and not just the flag or control fields. When multiple exceptions arise
simultaneously, a fixed priority determines the order in which they are handled. The
priorities are listed later in this chapter.

In Butterfly, all interrupts are controlled by the Interrupt Controller described in Chapter 8.
This provides the capability of multiple interrupt source channels.

2.3.4 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ
input LOW. This input can accept asynchronous transitions, and is delayed by one clock
cycle for synchronisation before it can affect the processor execution flow. It is designed
to support a data transfer or channel process, and has sufficient private registers to
remove the need for register saving in such applications (thus minimising the overhead of
context switching). The FIQ exception may be disabled by setting the F flag in the CPSR
(but note that this is not possible from User mode). If the F flag is reset, ARM7 checks for
a LOW level on the output of the FIQ synchroniser at the end of each instruction.

When a FIQ is detected, ARM7 performs the following:

[1] Saves the address of the next instruction to be executed plus 4 in R14_fiq; saves
CPSR in SPSR_fiq

[2] Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

[3] Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC
(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted
code.

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.3.5 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on
the nIRQ input. It has a lower priority than FIQ, and is masked out when a FIQ sequence
2-8 Butterfly Microcontroller Handbook

is entered. Its effect may be masked out at any time by setting the I bit in the CPSR (but
note that this is not possible from User mode). If the I flag is reset, ARM7 checks for a
LOW level on the output of the IRQ synchroniser at the end of each instruction. When an
IRQ is detected, ARM7 performs the following:

[1] Saves the address of the next instruction to be executed plus 4 in R14_irq; saves
CPSR in SPSR_irq

[2] Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

[3] Forces the PC to fetch the next instruction from address 0x18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC
and the CPSR and resume execution of the interrupted code.

2.3.6 Abort

An ABORT can be signalled by the external ABORT input. ABORT indicates that the
current memory access cannot be completed. For instance, in a virtual memory system
the data corresponding to the current address may have been moved out of memory
onto a disc, and considerable processor activity may be required to recover the data
before the access can be performed successfully. ARM7 checks for ABORT during
memory access cycles. When successfully aborted ARM7 will respond in one of two
ways:

[1] If the abort occurred during an instruction prefetch (a Prefetch Abort), the pre-fetched
instruction is marked as invalid but the abort exception does not occur immediately. If
the instruction is not executed, for example as a result of a branch being taken while
it is in the pipeline, no abort will occur. An abort will take place if the instruction
reaches the head of the pipeline and is about to be executed.

[2] If the abort occurred during a data access (a Data Abort), the action depends on the
instruction type.

[a] Single data transfer instructions (LDR, STR) will write back modified base
registers and the Abort handler must be aware of this.

[b] The swap instruction (SWP) is aborted as though it had not executed, though
externally the read access may take place.

[c] Block data transfer instructions (LDM, STM) complete, and if write-back is set,
the base is updated. If the instruction would normally have over-written the
base with data (i.e. LDM with the base in the transfer list), this over-writing is

Issue 2.0 Chapter 2 - ARM7 Microprocessor

prevented. All register over-writing is prevented after the Abort is indicated,
which means in particular that R15 (which is always last to be transferred) is
preserved in an aborted LDM instruction.
Butterfly Microcontroller Handbook 2-9

When either a prefetch or data abort occurs, ARM7 performs the following:

[1] Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for data
aborts) in R14_abt; saves CPSR in SPSR_abt.

[2] Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

[3] Forces the PC to fetch the next instruction from either address 0x0C (prefetch abort)
or address 0x10 (data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch
abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the
CPSR and retry the aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be
implemented when suitable memory management software is available. The processor is
allowed to generate arbitrary addresses, and when the data at an address is unavailable
the MMU signals an abort. The processor traps into system software which must work
out the cause of the abort, make the requested data available, and retry the aborted
instruction. The application program needs no knowledge of the amount of memory
available to it, nor is its state in any way affected by the abort.

2.3.7 Software Interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode, usually
to request a particular supervisor function. When a SWI is executed, ARM7 performs the
following:

[1] Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

[2] Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

[3] Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and
return to the instruction following the SWI.

2.3.8 Undefined Instruction Trap

When the ARM7 comes across an instruction which it cannot handle, it will take the
undefined instruction trap.

Chapter 2 - ARM7 Microprocessor Issue 2.0

The trap may be used for software emulation of a coprocessor in a system which does
not have the coprocessor hardware, or for general purpose instruction set extension by
software emulation.
2-10 Butterfly Microcontroller Handbook

When ARM7 takes the undefined instruction trap it performs the following:

[1] Saves the address of the Undefined or coprocessor instruction plus 4 in R14_und;
saves CPSR in SPSR_und.

[2] Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

[3] Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.
This will restore the CPSR and return to the instruction following the undefined
instruction.

2.3.9 Vector Summary

These are byte addresses, and will normally contain a branch instruction pointing to the
relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and
execution time of) a branch instruction.

2.3.10 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they will be handled:

[1] Reset (highest priority)

[2] Data abort

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

Table 2-2: Vector Summary

Issue 2.0 Chapter 2 - ARM7 Microprocessor

[3] FIQ

[4] IRQ

[5] Prefetch abort
Butterfly Microcontroller Handbook 2-11

[6] Undefined Instruction, Software interrupt (lowest priority)

Note: Not all exceptions can occur at once. Undefined instruction and software
interrupt are mutually exclusive since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag in
the CPSR is reset), ARM7 will enter the data abort handler and then immediately
proceed to the FIQ vector. A normal return from FIQ will cause the data abort handler to
resume execution. Placing data abort at a higher priority than FIQ is necessary to ensure
that the transfer error does not escape detection; the time for this exception entry should
be added to worst case FIQ latency calculations.

2.3.11 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time
the request can take to pass through the synchroniser (Tsyncmax), plus the time for the
longest instruction to complete (Tldm, the longest instruction is an LDM which loads all
the registers including the PC), plus the time for the data abort entry (Texc), plus the time
for FIQ entry (Tfiq). The ARM7 will then execute the instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles.
The total time is therefore 28 processor cycles. This is just over 1.4 microseconds in a
system which uses a continuous 20 MHz processor clock. The maximum IRQ latency
calculation is similar, but must allow for the fact that FIQ has higher priority and could
delay entry into the IRQ handling routine for an arbitrary length of time. The minimum
latency for FIQ or IRQ consists of the shortest time the request can take through the
synchroniser (Tsyncmin) plus Tfiq. This is 4 processor cycles.

2.3.12 Reset

When the nSreset signal goes LOW, ARM7 abandons the executing instructions and
then continues to fetch instructions from incrementing word addresses.

When nSreset goes HIGH again, ARM7 does the following:

[1] Over-writes R14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The value of the saved PC and CPSR is not defined.

[2] Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR.

[3] Forces the PC to fetch the next instruction from address 0x0000 0000

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.4 Instruction Set

2.4.1 Instruction Set Summary
2-12 Butterfly Microcontroller Handbook

A summary of the ARM7 instruction set is shown in Figure 2-4: Instruction Set Summary.

Figure 2-4: Instruction Set Summary

Note: Some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 6
changed to a 1. These instructions shall not be used, as their action may
change in future ARM implementations

31 2827 24 23 2019 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer*

Branch

Coproc Data Operation

Coproc Register Transfer*

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

* Not supported for external devices on Butterfly

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.4.2 The Condition Field
Butterfly Microcontroller Handbook 2-13

Figure 2-5: Condition Codes

All ARM7 instructions are conditionally executed, which means that their execution may
or may not take place depending on the values of the N, Z, C and V flags in the CPSR.
The condition encoding is shown in Figure 2-5: Condition Codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of
the flags. The never (NV) class of condition codes shall not be used as they will be
redefined in future variants of the ARM architecture. If a NOP is required it is suggested
that MOV R0,R0 be used. The assembler treats the absence of a condition code as
though always had been specified.

The other condition codes have meanings as detailed in Figure 2-5: Condition Codes, for
instance code 0000 (EQual) causes the instruction to be executed only if the Z flag is set.
This would correspond to the case where a compare (CMP) instruction had found the
two operands to be equal. If the two operands were different, the compare instruction
would have reset the Z flag and the instruction will not be executed.

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.4.3 Branch and Branch with Link (B, BL)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-6:
2-14 Butterfly Microcontroller Handbook

Branch Instructions.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two
bits, sign extended to 32 bits, and added to the PC. The instruction can therefore specify
a branch of +/- 32Mbytes. The branch offset must take account of the prefetch operation,
which causes the PC to be 2 words (8 bytes) ahead of the current instruction.

Figure 2-6: Branch Instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved in
R14 if a Branch with Link type operation is required.

The Link Bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R14 is adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR is
not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is
still valid or LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by
Rn.

Instruction Cycle Times

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and
N are as defined in Section 2.5.1, Cycle Types.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Assembler Syntax

B{L}{cond} <expression>
Butterfly Microcontroller Handbook 2-15

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will not
be affected by the instruction.

{cond} is a two-char mnemonic as shown in Figure 2-5: Condition Codes (EQ, NE, VS
etc). If absent then AL (ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect of
; PC offset)

B there ; Always condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred if R1
BEQ fred ; was zero, otherwise continue to next instruction

BL sub+ROM; call subroutine at computed address

ADDSR1,#1 ; add 1 to register 1, setting CPSR flags on the
BLCCsub ; result then call subroutine if the C flag is

; reset, which will be the case unless R1 held
; 0xFFFFFFFF

2.4.4 Data Processing

The instruction is only executed if the condition is true, defined at the beginning of this
chapter. The instruction encoding is shown in Figure 2-7: Data Processing Instructions.

The instruction produces a result by performing a specified arithmetic or logical operation
on one or two operands. The first operand is always a register (Rn). The second operand
may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or
updated as a result of this instruction, according to the value of the S bit in the
instruction. Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They
are used only to perform tests and to set the condition codes on the result and always
have the S bit set. The instructions and their effects are listed in Table 2-3: ARM Data
Processing Instructions.

Chapter 2 - ARM7 Microprocessor Issue 2.0

.

2-16 Butterfly Microcontroller Handbook

Figure 2-7: Data Processing Instructions

Issue 2.0 Chapter 2 - ARM7 Microprocessor

CPSR Flags

The data processing operations may be classified as logical or arithmetic. The logical
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on
Butterfly Microcontroller Handbook 2-17

all corresponding bits of the operand or operands to produce the result. If the S bit is set
(and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C flag will
be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set
to the logical value of bit 31 of the result.

Assembler
Mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit reset)

MVN 1111 NOT operand2 (operand1 is ignored)

Table 2-3: ARM Data Processing Instructions

Chapter 2 - ARM7 Microprocessor Issue 2.0

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32 bit integer (either unsigned or 2's complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if an
2-18 Butterfly Microcontroller Handbook

overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were 2's complement
signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if
and only if the result was zero, and the N flag will be set to the value of bit 31 of the result
(indicating a negative result if the operands are considered to be 2's complement
signed).

Shifts

When the second operand is specified to be a shifted register, the operation of the barrel
shifter is controlled by the Shift field in the instruction. This field indicates the type of shift
to be performed (logical left or right, arithmetic right or rotate right). The amount by which
the register should be shifted may be contained in an immediate field in the instruction,
or in the bottom byte of another register (other than R15). The encoding for the different
shift types is shown in Figure 2-8: ARM Shift Operations.

Figure 2-8: ARM Shift Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and
Butterfly Microcontroller Handbook 2-19

moves each bit by the specified amount to a more significant position. The least
significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit becomes
the shifter carry output which may be latched into the C bit of the CPSR when the ALU
operation is in the logical class (see above). For example, the effect of LSL #5 is shown
in Figure 2-9: Logical Shift Left.

Figure 2-9: Logical Shift Left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant
positions in the result. LSR #5 has the effect shown in Figure 2-10: Logical Shift Right.

Figure 2-10: Logical Shift Right

Chapter 2 - ARM7 Microprocessor Issue 2.0

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
2-20 Butterfly Microcontroller Handbook

will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are
filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement
notation. For example, ASR #5 is shown in Figure 2-11: Arithmetic Shift Right.

Figure 2-11: Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in Figure 2-
12: Rotate Right.

Issue 2.0 Chapter 2 - ARM7 Microprocessor
Butterfly Microcontroller Handbook 2-21

Figure 2-12: Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a
special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by
one bit position of the 33 bit quantity formed by appending the CPSR C flag to the most
significant end of the contents of Rm as shown in Figure 2-13: Rotate Right Extended.

Figure 2-13: Rotate Right Extended

Register Specified Shift Amount

Only the least significant byte of the contents of Rs is used to determine the shift amount.
Rs can be any general register other than R15.

Chapter 2 - ARM7 Microprocessor Issue 2.0

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an
2-22 Butterfly Microcontroller Handbook

instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift
described above:

[1] LSL by 32 has result zero, carry out equal to bit 0 of Rm.

[2] LSL by more than 32 has result zero, carry out zero.

[3] LSR by 32 has result zero, carry out equal to bit 31 of Rm.

[4] LSR by more than 32 has result zero, carry out zero.

[5] ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

[6] ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

[7] ROR by n where n is greater than 32 will give the same result and carry out as ROR
by n-32; therefore repeatedly subtract 32 from n until the amount is in the range 1 to
32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a
one in this bit will cause the instruction to be a multiply or undefined instruction.

Immediate Operand Rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bit immediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many common
constants to be generated, for example all powers of 2.

Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is
placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the
SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction shall not
be used in User mode.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Using R15 as an Operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.
Butterfly Microcontroller Handbook 2-23

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

TEQ, TST, CMP & CMN Opcodes

These instructions do not write the result of their operation but do set flags in the CPSR.
An assembler shall always set the S flag for these instructions even if it is not specified in
the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the 32
bit modes, the PSR transfer operations should be used instead. If used in these modes,
its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged mode and
to do nothing if in User mode.

Instruction Cycle Times

Data Processing instructions vary in the number of incremental cycles taken as follows:

[1] Normal Data Processing 1S

[2] Data Processing with register specified shift 1S + 1I

[3] Data Processing with PC written 2S + 1N

[4] Data Processing with register specified shift and PC written2S + 1N + 1I

S, N and I are as defined in Section 2.5.1, Cycle Types.

Assembler Syntax

[1] MOV,MVN - single operand instructions
opcode>{cond}{S} Rd,<Op2>

[2] CMP,CMN,TEQ,TST - instructions which do not produce a result.
<opcode>{cond} Rn,<Op2>

[3] AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or,<#expression>

{cond} - two-character condition mnemonic, see Figure 2-5: Condition Codes

{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Chapter 2 - ARM7 Microprocessor Issue 2.0

Rd, Rn and Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate 8-
bit field to match the expression. If this is impossible, it will give an error.
2-24 Butterfly Microcontroller Handbook

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right one
bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they
assemble to the same code.

Examples

ADDEQR2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQSR4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2
; logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVSPC,R14 ; return from exception and restore CPSR
; from SPSR_mode

2.4.5 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in Figure 2-14: PSR Transfer.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction
allows the contents of the CPSR or SPSR_<mode> to be moved to a general register.
The MSR instruction allows the contents of a general register to be moved to the CPSR
or SPSR_<mode> register.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

The MSR instruction also allows an immediate value or register contents to be
transferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode> without
affecting the control bits. In this case, the top four bits of the specified register contents or
Butterfly Microcontroller Handbook 2-25

32 bit immediate value are written to the top four bits of the relevant PSR.

Operand Restrictions

In User mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the entire
CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution. For
example, only SPSR_fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User mode,
since no such register exist

Reserved Bits

Only eleven bits of the PSR are defined in ARM7 (N,Z,C,V,I,F & M[4:0]); the remaining
bits (= PSR[27:8,5]) are reserved for use in future versions of the processor. To ensure
the maximum compatibility between ARM7 programs and future processors, the
following rules should be observed:

[1] The reserved bits shall be preserved when changing the value in a PSR.

[2] Programs shall not rely on specific values from the reserved bits when checking the
PSR status, since they may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register; this involves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits and then transferring
the modified value back to the PSR register using the MSR instruction.

e.g. The following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; reset the mode bits
ORR R0,R0,#new_mode; select new mode
MSR CPSR,R0 ; write back the modified CPSR

Chapter 2 - ARM7 Microprocessor Issue 2.0

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. e.g. The following
instruction sets the N,Z,C & V flags:
2-26 Butterfly Microcontroller Handbook

MSR CPSR_flg,#0xF0000000 ; set all the flags regardless of
; their previous state (does not
; affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

Issue 2.0 Chapter 2 - ARM7 Microprocessor
Butterfly Microcontroller Handbook 2-27

Chapter 2 - ARM7 Microprocessor Issue 2.0

Figure 2-14: PSR Transfer

Instruction Cycle Times
2-28 Butterfly Microcontroller Handbook

PSR Transfers take 1S incremental cycle, where S as defined in Section 2.5.1, Cycle
Types.

Assembler Syntax

[1] MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

[2] MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

[3] MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V
flags respectively.

[4] MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits
are written to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic, see Figure 2-5: Condition Codes

Rd and Rm are expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as
are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

Where <#expression> is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is impossible, it will give an error.

Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA

; (i.e. set N,C; reset Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Issue 2.0 Chapter 2 - ARM7 Microprocessor

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
Butterfly Microcontroller Handbook 2-29

MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; reset N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <-

Rm[31:28]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; reset C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

2.4.6 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
15: Multiply Instructions. The multiply and multiply-accumulate instructions use a 2 bit
Booth's algorithm to perform integer multiplication.

Figure 2-15: Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set
to zero for compatibility with possible future upgrades to the instruction set.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Chapter 2 - ARM7 Microprocessor Issue 2.0

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only
2-30 Butterfly Microcontroller Handbook

in the upper 32 bits - the low 32 bits of the signed and unsigned results are identical. As
these instructions only produce the low 32 bits of a multiply, they can be used for both
signed and unsigned multiplies.

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed, operand A has the value -10, operand B has
the value 20, and the result is -200 which is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned, operand A has the value 4294967286,
operand B has the value 20 and the result is 85899345720, which is represented as
0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

Due to the way multiplication was implemented in other ARM processors, certain
combinations of operand registers should be avoided. The ARM7’s advanced multiplier
can handle all operand combinations but by observing these restrictions code written for
the ARM7 will be more compatible with other ARM processors. (The assembler will issue
a warning if these restrictions are overlooked.)

The destination register Rd shall not be the same as the operand register Rm. R15 shall
not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the
same register when required.

CPSR Flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N
(Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit 31 of
the result, and Z is set if and only if the result is zero). The C (Carry) flag is set to a
meaningless value and the V (oVerflow) flag is unaffected.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Instruction Cycle Times

The Multiply instructions take 1S + mI cycles to execute, where S and I are as defined in
Section 2.5.1, Cycle Types.
Butterfly Microcontroller Handbook 2-31

m is the number of cycles required by the multiply algorithm, which is determined by the
contents of Rs. Multiplication by any number between 2^(2m-3) and 2^(2m-1)-1 takes
1S+mI m cycles for 1<m>16. Multiplication by 0 or 1 takes 1S+1I cycles, and
multiplication by any number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

Assembler Syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see Figure 2-5: Condition Codes

{S} - set condition codes if S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

Examples

MUL R1,R2,R3 ; R1 := R2 * R3

MLAEQS R1,R2,R3,R4 ; conditionally R1 := R2 * R3 + R4,
; setting condition codes

2.4.7 Single Data Transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
16: Single Data Transfer Instructions.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the base register if `auto-indexing'
is required.

Chapter 2 - ARM7 Microprocessor Issue 2.0
2-32 Butterfly Microcontroller Handbook

Figure 2-16: Single Data Transfer Instructions

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Offsets and Auto-Indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the
instruction, or a second register (possibly shifted in some way). The offset may be added
Butterfly Microcontroller Handbook 2-33

to (U=1) or subtracted from (U=0) the base register Rn. The offset modification may be
performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base is used
as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified
base value may be written back into the base (W=1), or the old base value may be kept
(W=0). In the case of post-indexed addressing, the write back bit is redundant and is
always set to zero, since the old base value can be retained by setting the offset to zero.
Therefore post-indexed data transfers always write back the modified base. The only use
of the W bit in a post-indexed data transfer is in privileged mode code, where setting the
W bit forces non-privileged mode for the transfer, allowing the operating system to
generate a user address in a system where the memory management hardware makes
suitable use of this hardware.

Shifted Register Offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See Figure 2-8: ARM Shift Operations.

Bytes and Words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an
ARM7 register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control
signal. The two possible configurations are described below.

Little Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are filled with zeros. This is
shown in Figure 7-9: Little Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

Chapter 2 - ARM7 Microprocessor Issue 2.0

A word load (LDR) will normally use a word aligned address. However, an address offset
from a word boundary will cause the data to be rotated into the register so that the
addressed byte occupies bits 0 to 7. This means that half-words accessed at offsets 0
2-34 Butterfly Microcontroller Handbook

and 2 from the word boundary will be correctly loaded into bits 0 through 15 of the
register. Two shift operations are then required to reset or to sign extend the upper 16
bits. This is illustrated in Figure 2-17: Little Endian Offset Addressing.

Figure 2-17: Little Endian Offset Addressing

A word store (STR) should generate a word aligned address. The word presented to the
data bus is not affected if the address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Big Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied
address is on a word boundary, on data bus inputs 23 through 16 if it is a word address
Butterfly Microcontroller Handbook 2-35

plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are filled with zeros.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2
from a word boundary will cause the data to be rotated into the register so that the
addressed byte occupies bits 31 through 24. This means that half-words accessed at
these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom
16 bits. An address offset of 1 or 3 from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the
data bus is not affected if the address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register note it contains an address 8 bytes on from the address
of the current instruction.

R15 shall not be specified as the register offset (Rm). When R15 is the source register
(Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

Restriction on the use of Base Register

When configured for late aborts, the following example code is difficult to unwind as the
base register, Rn, gets updated before the abort handler starts. Sometimes it may be
impossible to calculate the initial value.

For example:

LDR R0,[R1],R1
<LDR|STR> Rd,[Rn],{+/-}Rn{,<shift>}

Therefore a post-indexed LDR|STR where Rm is the same register as Rn should not be
used.

Chapter 2 - ARM7 Microprocessor Issue 2.0

Data Aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may be
2-36 Butterfly Microcontroller Handbook

absent from main memory. The memory manager can signal a problem by taking the
processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

Instruction Cycle Times

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental
cycles, where S,N and I are as defined in Section 2.5.1, Cycle Types.

STR instructions take 2N incremental cycles to execute.

Assembler Syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR - load from memory into a register

STR - store from a register into memory

{cond} - two-character condition mnemonic, see Figure 2-5: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

{T} - if T is present the W bit will be set in a post-indexed instruction, forcing non-
privileged mode for the transfer cycle. T is not allowed when a pre-indexed addressing
mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

[1] An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

[2] A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

Issue 2.0 Chapter 2 - ARM7 Microprocessor

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>

[3] A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes
Butterfly Microcontroller Handbook 2-37

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7 pipelining. In this case
base write-back shall not be specified.

<shift> is a general shift operation (see section on data processing instructions) but note
that the shift amount may not be specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

Examples

STR R1,[R2,R4]! ; store R1 at R2+R4 (both of which are
; registers) and write back address to R2

STR R1,[R2],R4 ; store R1 at R2 and write back
; R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16
; Don't write back

LDR R1,[R2,R3,LSL#2]; load R1 from contents of R2+R3*4

LDREQBR1,[R6,#5]; conditionally load byte at R6+5 into
; R1 bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1,PLACE ; generate PC relative offset to address
• ; PLACE
•

PLACE...

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.4.8 Block Data Transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
2-38 Butterfly Microcontroller Handbook

18: Block Data Transfer Instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the
currently visible registers. They support all possible stacking modes, maintaining full or
empty stacks which can grow up or down memory, and are very efficient instructions for
saving or restoring context, or for moving large blocks of data around main memory.

Figure 2-18: Block Data Transfer Instructions

Issue 2.0 Chapter 2 - ARM7 Microprocessor

The Register List

The instruction can cause the transfer of any registers in the current bank (and non-user
mode programs can also transfer to and from the user bank, see below). The register list
Butterfly Microcontroller Handbook 2-39

is a 16 bit field in the instruction, with each bit corresponding to a register. A 1 in bit 0 of
the register field will cause R0 to be transferred, a 0 will cause it not to be transferred;
similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is
that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

Addressing Modes

The transfer addresses are determined by the contents of the base register (Rn), the pre/
post bit (P) and the up/down bit (U). The registers are transferred in the order lowest to
highest, so R15 (if in the list) will always be transferred last. The lowest register also gets
transferred to/from the lowest memory address. By way of illustration, consider the
transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 2-19: Post-Increment Addressing, Figure 2-20: Pre-
Increment Addressing, Figure 2-21: Post-Decrement Addressing and Figure 2-22: Pre-
Decrement Addressing show the sequence of register transfers, the addresses used,
and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been over-written with the loaded value.

Address Alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. However, the bottom 2 bits of the address will
appear on A[1:0] and might be interpreted by the memory system

Chapter 2 - ARM7 Microprocessor Issue 2.0

0x100C 0x100C
2-40 Butterfly Microcontroller Handbook

Figure 2-19: Post-Increment Addressing

Figure 2-20: Pre-Increment Addressing

0x1000

0x0FF4

Rn

1

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7
R5

R1
R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7
R5

R1
R5

Rn

Issue 2.0 Chapter 2 - ARM7 Microprocessor

0x100C 0x100C
Butterfly Microcontroller Handbook 2-41

Figure 2-21: Post-Decrement Addressing

Figure 2-22: Pre-Decrement Addressing

0x1000

0x0FF4

Rn

1

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7
R5

R1
R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2
R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7
R5

R1
R5

Rn

Chapter 2 - ARM7 Microprocessor Issue 2.0

Use of the S Bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if the
2-42 Butterfly Microcontroller Handbook

instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S Bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time
as R15 is loaded.

STM with R15 in transfer list and S Bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back shall not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than
the register bank corresponding to the current mode. This is useful for saving the user
state on process switches. Base write-back shall not be used when this mechanism is
employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a NOP after the LDM will ensure safety).

Use of R15 as the base

R15 shall not be used as the base register in any LDM or STM instruction.

Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle of
the instruction. During a STM, the first register is written out at the start of the second
cycle. A STM which includes storing the base, with the base as the first register to be
stored, will therefore store the unchanged value, whereas with the base second or later
in the transfer order, will store the modified value. A LDM will always over-write the
updated base if the base is in the list.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the
memory manager can indicate a problem with an address by taking the ABORT signal
Butterfly Microcontroller Handbook 2-43

HIGH. This can happen on any transfer during a multiple register load or store, and must
be recoverable if ARM7 is to be used in a virtual memory system.

Aborts During STM instructions

If the abort occurs during a store multiple instruction, ARM7 takes little action until the
instruction completes, whereupon it enters the data abort trap. The memory manager is
responsible for preventing erroneous writes to the memory. The only change to the
internal state of the processor will be the modification of the base register if write-back
was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts During LDM instructions

When ARM7 detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible.

[1] Overwriting of registers stops when the abort happens. The aborting load will not
take place but earlier ones may have over-written registers. The PC is always the last
register to be written and so will always be preserved.

[2] The base register is restored, to its modified value if write-back was requested. This
ensures recoverability in the case where the base register is also in the transfer list,
and may have been over-written before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

Instruction Cycle Times

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I
incremental cycles, where S,N and I are as defined in Section 2.5.1, Cycle Types.

STM instructions take (n-1)S + 2N incremental cycles to execute, wheren is the number
of words transferred.

Chapter 2 - ARM7 Microprocessor Issue 2.0

Assembler Syntax
<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} - two character condition mnemonic, see Figure 2-5: Condition Codes
2-44 Butterfly Microcontroller Handbook

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (eg {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present sets S bit to load the CPSR along with the PC, or forces transfer of user
bank when in privileged mode

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending
on whether the instruction is being used to support stacks or for other purposes. The
equivalences between the names and the values of the bits in the instruction are shown
in the following table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of
stack required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index has
to be done (full) before storing to the stack. The A and D refer to whether the stack is
ascending or descending. If ascending, a STM will go up and LDM down, if descending,
vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply
mean Increment After, Increment Before, Decrement After, Decrement Before.

name stack other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Table 2-4: Addressing Mode Names

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Examples

LDMFDSP!,{R0,R1,R2} ; unstack 3 registers
Butterfly Microcontroller Handbook 2-45

STMIAR0,{R0-R15} ; save all registers

LDMFDSP!,{R15} ; R15 <- (SP),CPSR unchanged
LDMFDSP!,{R15}^ ;R15 <- (SP),CPSR <- SPSR_mode

; (allowed only in privileged modes)
STMFDR13,{R0-R14}^ ; Save user mode regs on stack (allowed

; only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMEDSP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will over-write R14

LDMEDSP!,{R0-R3,R15}; restore workspace and return

2.4.9 Single Data Swap (SWP)

Figure 2-23: Swap Instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
23: Swap Instruction.

Chapter 2 - ARM7 Microprocessor Issue 2.0

The data swap instruction is used to swap a byte or word quantity between a register and
external memory. This instruction is implemented as a memory read followed by a
memory write which are “locked” together (the processor cannot be interrupted until both
2-46 Butterfly Microcontroller Handbook

operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. Then it writes the contents of the
source register (Rm) to the swap address, and stores the old memory contents in the
destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal
to the external memory manager that they are locked together, and should be allowed to
complete without interruption. This is important in multi-processor systems where the
swap instruction is the only indivisible instruction which may be used to implement
semaphores; control of the memory must not be removed from a processor while it is
performing a locked operation.

Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM7 register and memory. The SWP instruction is implemented as a LDR followed by a
STR and the action of these is as described in the section on single data transfers. In
particular, the description of Big and Little Endian configuration applies to the SWP
instruction.

Use of R15

R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

Data Aborts

If the address used for the swap is unacceptable to a memory management system, the
internal MMU or external memory manager can flag the problem by driving ABORT
HIGH. This can happen on either the read or the write cycle (or both), and in either case,
the Data Abort trap will be taken. It is up to the system software to resolve the cause of
the problem, then the instruction can be restarted and the original program continued.

Instruction Cycle Times

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are
as defined in Section 2.5.1, Cycle Types.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

Assembler Syntax

<SWP>{cond}{B} Rd,Rm,[Rn]
Butterfly Microcontroller Handbook 2-47

{cond} - two-character condition mnemonic, see Figure 2-5: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

Examples

SWP R0,R1,[R2] ; load R0 with the word addressed by R2,
; and store R1 at R2

SWPBR2,R3,[R4] ; load R2 with the byte addressed by R4,
; and store bits 0 to 7 of R3 at R4

SWPEQR0,R0,[R1]; conditionally swap the contents of R1
; with R0

2.4.10 Software Interrupt (SWI)

Figure 2-24: Software Interrupt Instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
24: Software Interrupt Instruction.

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects the
mode change. The PC is then forced to a fixed value (0x08) and the CPSR is saved in
SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating system
may be constructed.

Chapter 2 - ARM7 Microprocessor Issue 2.0

Return from the Supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return to
2-48 Butterfly Microcontroller Handbook

the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address and SPSR.

Comment Field

The bottom 24 bits of the instruction are ignored by the processor, and may be used to
communicate information to the supervisor code. For instance, the supervisor may look
at this field and use it to index into an array of entry points for routines which perform the
various supervisor functions.

Instruction Cycle Times

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and
N are as defined in Section 2.5.1, Cycle Types.

Assembler Syntax

SWI{cond} <expression>

{cond} - two character condition mnemonic, see Figure 2-5: Condition Codes

<expression> is evaluated and placed in the comment field (which is ignored by ARM7).

Examples

SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a “k” to the write stream
SWINE0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
. . .

Zero EQU 0
ReadCEQU 256

Issue 2.0 Chapter 2 - ARM7 Microprocessor

WriteIEQU 512

Supervisor
Butterfly Microcontroller Handbook 2-49

; SWI has routine required in bits 8-23 and data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFDR13,{R0-R2,R14}; save work registers and return address
LDR R0,[R14,#-4] ; get SWI instruction
BIC R0,R0,#0xFF000000; reset top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable ; get start address of entry table
LDR R15,[R2,R1,LSL#2]; branch to appropriate routine

WriteIRtn ; enter with character in R0 bits 0-7
.
LDMFDR13,{R0-R2,R15}^; restore workspace and return

; restoring processor mode and flags

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.4.11 Butterfly Coprocessor Support

The following describes the generic ARM7 instruction set capability for coprocessing and
is included for completeness.
2-50 Butterfly Microcontroller Handbook

On Butterfly however, only coprocessor number 3 is supported and is used for on-chip
power control (see Section 5.3.4, Low Power Sleep Mode).

All other coprocessor instruction types will result in an undefined instruction exception
being taken.

2.4.12 Coprocessor Data Operations (CDP)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure 2-
25: Coprocessor Data Operation Instruction.

This class of instruction is used to tell a coprocessor to perform some internal operation.
No result is communicated back to ARM7, and it will not wait for the operation to
complete. The coprocessor could contain a queue of such instructions awaiting
execution, and their execution can overlap other ARM72S + 1N incremental cycles,
where S and N are as defined in Section 2.5.1, Cycle Types. activity allowing the
coprocessor and ARM7 to perform independent tasks in parallel.

Figure 2-25: Coprocessor Data Operation Instruction

Issue 2.0 Chapter 2 - ARM7 Microprocessor

The Coprocessor Fields

Only bit 4 and bits 24 to 31 are significant to ARM7; the remaining bits are used by
coprocessors. The above field names are used by convention, and particular
Butterfly Microcontroller Handbook 2-51

coprocessors may redefine the use of all fields except CP# as appropriate. The CP# field
is used to contain an identifying number (in the range 0 to 15) for each coprocessor, and
a coprocessor will ignore any instruction which does not contain its number in the CP#
field.

The conventional interpretation of the instruction is that the coprocessor should perform
an operation specified in the CP Opc field (and possibly in the CP field) on the contents
of CRn and CRm, and place the result in CRd.

Instruction Cycle Times

1S + bI incremental cycles to execute, where S and I are as defined in Section 2.5.1,
Cycle Types, and Assembler Syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} - two character condition mnemonic, see Figure 2-5: Condition Codes

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn and
CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

Examples

CDP p1,10,c1,c2,c3 ; request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in

CR1

CDPEQp2,5,c1,c2,c3,2 ; if Z flag is set request coproc 2 to do
; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.4.13 Undefined Instruction
2-52 Butterfly Microcontroller Handbook

Figure 2-26: Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction format is shown in Figure 2-26:
Undefined Instruction.

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any
coprocessors which may be present, and all coprocessors must refuse to accept it by
driving CPA and CPB HIGH.

Assembler Syntax

At present the assembler has no mnemonics for generating this instruction. If it is
adopted in the future for some specified use, suitable mnemonics will be added to the
assembler. Until such time, this instruction shall not be used.

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5 Instruction Cycle Operations

2.5.1 Cycle Types
Butterfly Microcontroller Handbook 2-53

All memory transfer cycles can be placed in one of four categories:

[1] Non-sequential cycle. ARM7 requests a transfer to or from an address which is
unrelated to the address used in the preceding cycle.

[2] Sequential cycle. ARM7 requests a transfer to or from an address which is either the
same as the address in the preceding cycle, or is one word after the preceding
address.

[3] Internal cycle. ARM7 does not require a transfer, as it is performing an internal
function and no useful prefetching can be performed at the same time.

[4] Coprocessor register transfer. ARM7 wishes to use the data bus to communicate with
a coprocessor, but does not require any action by the memory system.

The length of an internal cycle is always one system clock period. Sequential and non-
sequential cycles are dependent on the speed of the memory or peripheral they are
accessing. Page mode memories can take advantage of sequential accesses since the
access times to consecutive locations are less than to unrelated locations. All on chip
accesses are accomplished in a single clock period.

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.5.2 Branch and Branch with Link

A branch instruction calculates the branch destination in the first cycle, whilst performing
a prefetch from the current PC. This prefetch is done in all cases, since by the time the
2-54 Butterfly Microcontroller Handbook

decision to take the branch has been reached it is already too late to prevent the
prefetch.

During the second cycle a fetch is performed from the branch destination, and the return
address is stored in register 14 if the link bit is set.

The third cycle performs a fetch from the destination + 4, refilling the instruction pipeline,
and if the branch is with link R14 is modified (4 is subtracted from it) to simplify return
from SUB PC,R14,#4 to MOV PC,R14. This makes the STM..{R14} LDM..{PC} type of
subroutine work correctly. The cycle timings are shown below in Table 2-5: Branch
Instruction Cycle Operations, where:

pc is the address of the branch instruction

alu is an address calculated by ARM7

(alu) are the contents of that address, etc

Cycle Address Data Cycle Type

1 pc+8 (pc + 8) S

2 alu (alu) N

3 alu+4 (alu + 4) S

alu+8 S

Table 2-5: Branch Instruction Cycle Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.3 Data Operations

A data operation executes in a single datapath cycle except where the shift is determined
by the contents of a register. A register is read onto the A bus, and a second register or
Butterfly Microcontroller Handbook 2-55

the immediate field onto the B bus. The ALU combines the A bus source and the shifted
B bus source according to the operation specified in the instruction, and the result (when
required) is written to the destination register. (Compares and tests do not produce
results, only the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the above operation, and the program
counter is incremented.

When the shift length is specified by a register, an additional datapath cycle occurs
before the above operation to copy the bottom 8 bits of that register into a holding latch in
the barrel shifter. The instruction prefetch will occur during this first cycle, and the
operation cycle will be internal (i.e. will not request memory). This internal cycle can be
merged with the following sequential access by the memory manager as the address
remains stable through both cycles.

The PC may be one or more of the register operands. When it is the destination external
bus activity may be affected. If the result is written to the PC, the contents of the
instruction pipeline are invalidated, and the address for the next instruction prefetch is
taken from the ALU rather than the address incrementer. The instruction pipeline is
refilled before any further execution takes place, and during this time exceptions are
locked out.

PSR Transfer operations exhibit the same timing characteristics as the data operations
except that the PC is never used as a source or destination register. The cycle timings
are shown below Table 2-6: Data Operation Instruction Cycle Operations.

Chapter 2 - ARM7 Microprocessor Issue 2.0

Cycle Address Data Cycle Type
2-56 Butterfly Microcontroller Handbook

normal 1 pc+8 (pc+8) S

pc+12 S

dest = pc 1 pc+8 (pc+8) S

2 alu (alu) N

3 alu+4 (alu+4) N

alu+8 N

shift (Rs) 1 pc+8 (pc+8) S

2 pc+12 - I

pc+12 S

shift Rs,
dest = pc

1 pc+8 (pc+8) S

2 pc+12 - I

3 alu (alu) N

4 alu+4 (alu+4) S

alu+8 S

Table 2-6: Data Operation Instruction Cycle Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.4 Multiply and Multiply Accumulate

The multiply instructions make use of special hardware which implements a 2 bit Booth's
algorithm with early termination. During the first cycle the accumulate Register is brought
Butterfly Microcontroller Handbook 2-57

to the ALU, which either transmits it or produces zero (depending on the instruction being
MLA or MUL) to initialise the destination register. During the same cycle, the multiplier
(Rs) is loaded into the Booth's shifter via the A bus.

The datapath then cycles, adding the multiplicand (Rm) to, subtracting it from, or just
transmitting, the result register. The multiplicand is shifted in the Nth cycle by 2N or 2N+1
bits, under control of the Booth's logic. The multiplier is shifted right 2 bits per cycle, and
when it is zero the instruction terminates (possibly after an additional cycle to reset a
pending borrow).

All cycles except the first are internal. The cycle timings are shown below in Table 2-7:
Multiply Instruction Cycle Operations. m is the number of cycles required by the Booth's
algorithm; see the section on instruction speeds.

Cycle Address Data Cycle Type

(Rs)=0,1 1 pc+8 (pc+8) S

2 pc+12 - I

pc+12 (pc+8) S

(Rs)>1 1 pc+8 (pc+8) S

2 pc+12 - I

• pc+12 - I

m pc+12 - I

m+1 pc+12 - I

pc+12 S

Table 2-7: Multiply Instruction Cycle Operations

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.5.5 Load Register

The first cycle of a load register instruction performs the address calculation. The data is
fetched from memory during the second cycle, and the base register modification is
2-58 Butterfly Microcontroller Handbook

performed during this cycle (if required). During the third cycle the data is transferred to
the destination register, and external memory is unused. This third cycle may normally
be merged with the following prefetch to form one memory N-cycle. The cycle timings are
shown below in Table 2-8: Load Register Instruction Cycle Operations.

Either the base or the destination (or both) may be the PC, and the prefetch sequence
will be changed if the PC is affected by the instruction.

The data fetch may abort, and in this case the destination modification is prevented.

Cycle Address Data Cycle Type

 normal 1 pc+8 (pc+8) S

2 alu (alu) N

3 pc+12 - I

pc+12 S

dest=pc 1 pc+8 (pc+8) S

2 alu pc’ N

3 pc+12 - I

4 pc’ (pc’) N

 5 pc’+4 (pc’+4) S

pc’+8 S

Table 2-8: Load Register Instruction Cycle Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.6 Store Register

The first cycle of a store register is similar to the first cycle of load register. During the
second cycle the base modification is performed, and at the same time the data is written
Butterfly Microcontroller Handbook 2-59

to memory. There is no third cycle. The cycle timings are shown below in Table 2-9:
Store Register Instruction Cycle Operations.

2.5.7 Load Multiple Registers

The first cycle of LDM is used to calculate the address of the first word to be transferred,
whilst performing a prefetch from memory. The second cycle fetches the first word, and
performs the base modification. During the third cycle, the first word is moved to the
appropriate destination register while the second word is fetched from memory, and the
modified base is latched internally in case it is needed to patch up after an abort. The
third cycle is repeated for subsequent fetches until the last data word has been
accessed, then the final (internal) cycle moves the last word to its destination register.
The cycle timings are shown in Table 2-10: Load Multiple Registers Instruction Cycle
Operations.

The last cycle may be merged with the next instruction prefetch to form a single memory
N-cycle.

If an abort occurs, the instruction continues to completion, but all register writing after the
abort is prevented. The final cycle is altered to restore the modified base register (which
may have been over-written by the load activity before the abort occurred).

When the PC is in the list of registers to be loaded the current instruction pipeline must
be invalidated.

Note that the PC is always the last register to be loaded, so an abort at any point will
prevent the PC from being over-written.

Cycle Address Data Cycle Type

1 pc+8 (pc+8) S

2 alu Rd N

pc+12 N

Table 2-9: Store Register Instruction Cycle Operations

Chapter 2 - ARM7 Microprocessor Issue 2.0

Cycle Address Data Cycle Type
2-60 Butterfly Microcontroller Handbook

1 register 1 pc+8 (pc+8) S

2 alu (alu) N

3 pc+12 - I

pc+12 S

1 register
dest=pc

1 pc+8 (pc+8) S

2 alu pc’ N

3 pc+12 - I

4 pc’ (pc’) N

 5 pc’+4 (pc’+4) S

pc’+8 S

n registers
(n>1)

1 pc+8 (pc+8) S

2 alu (alu) N

• alu+• (alu+•) S

n alu+• (alu+•) S

n+1 alu+• (alu+•) S

n+2 pc+12 - I

pc+12 S

n registers
(n>10)
incl pc

1 pc+8 (pc+8) S

2 alu (alu) N

• alu+• (alu+•) S

n alu+• (alu+•) S

n+1 alu+• pc’ S

n+2 pc+12 - I

n+3 pc’ (pc’) N

n+4 pc’+4 (pc’+4) S

pc’+8 S

Table 2-10: Load Multiple Registers Instruction Cycle Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.8 Store Multiple Registers

Store multiple proceeds very much as load multiple, without the final cycle. The restart
problem is much more straightforward here, as there is no wholesale over-writing of
Butterfly Microcontroller Handbook 2-61

registers to contend with. The cycle timings are shown in Table 2-11: Store Multiple
Registers Instruction Cycle Operations.

Cycle Address Data Cycle Type

1 register 1 pc+8 (pc+8) S

2 alu Ra N

pc+12 N

n registers
(n>1)

1 pc+8 (pc+8) S

2 alu Ra N

• alu+• R• S

n alu+• R• S

n+1 alu+• R• S

pc+12 N

Table 2-11: Store Multiple Registers Instruction Cycle Operations

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.5.9 Data Swap

This is similar to the load and store register instructions, but the actual swap takes place
in cycles 2 and 3. In the second cycle, the data is fetched from external memory. In the
2-62 Butterfly Microcontroller Handbook

third cycle, the contents of the source register are written out to the external memory.
The data read in cycle 2 is written into the destination register during the fourth cycle.
The cycle timings are shown below in Table 2-12: Data Swap Instruction Cycle
Operations.

The data swapped may be a byte or word quantity (b/w).

The swap operation may be aborted in either the read or write cycle, and in both cases
the destination register will not be affected.

Cycle Address Data Cycle Type

1 pc+8 (pc+8) S

2 Rn (Rn) N

3 Rn Rm N

4 pc+12 - I

pc+12 S

Table 2-12: Data Swap Instruction Cycle Operations

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.10 Software Interrupt and Exception Entry

Exceptions (and software interrupts) force the PC to a particular value and refill the
instruction pipeline from there. During the first cycle the forced address is constructed,
Butterfly Microcontroller Handbook 2-63

and a mode change may take place. The return address is moved to R14 and the CPSR
to SPSR_svc.

During the second cycle the return address is modified to facilitate return, though this
modification is less useful than in the case of branch with link.

The third cycle is required only to complete the refilling of the instruction pipeline. The
cycle timings are shown below in Table 2-13: Software Interrupt Instruction Cycle
Operations.

For software interrupts, pc is the address of the SWI instruction.

For interrupts and reset, pc is the address of the instruction following the last one
to be executed before entering the exception.

For prefetch abort, pc is the address of the aborting instruction.

For data abort, pc is the address of the instruction following the one which
attempted the aborted data transfer.

Xn is the appropriate trap address.

Cycle Address Data Cycle Type
Processor

Mode

1 pc+8 (pc+8) S old mode

2 Xn (Xn) N exception mode

3 Xn+4 (Xn+4) S exception mode

Xn+8 S

Table 2-13: Software Interrupt Instruction Cycle Operations

Chapter 2 - ARM7 Microprocessor Issue 2.0

2.5.11 Coprocessor Data Operation

Section 5.3.4 on Butterfly sleep mode should be read in conjunction with Section 2.5.11
and Section 2.5.12.
2-64 Butterfly Microcontroller Handbook

A coprocessor data operation is a request from ARM7 for the coprocessor to initiate
some action. The action need not be completed for some time, but the coprocessor must
commit to doing it before driving CPB LOW.

If the coprocessor can never do the requested task, it should leave CPA and CPB HIGH.
If it can do the task, but can't commit right now, it should drive CPA LOW but leave CPB
HIGH until it can commit. ARM7 will busy-wait until CPB goes LOW. The cycle timings
are shown in Table 2-14: Coprocessor Data Operation Instruction Cycles.

Cycle Address Data Cycle Type

ready 1 pc+8 (pc+8) S

pc+12 N

not ready 1 pc+8 (pc+8) S

2 pc+8 - S

• pc+8 - S

n pc+8 - S

pc+12 N

Table 2-14: Coprocessor Data Operation Instruction Cycles

Issue 2.0 Chapter 2 - ARM7 Microprocessor

2.5.12 Undefined Instructions and Coprocessor Absent

When a coprocessor detects a coprocessor instruction which it cannot perform, and this
must include all undefined instructions, it must not drive CPA or CPB LOW. These will
Butterfly Microcontroller Handbook 2-65

remain HIGH, causing the undefined instruction trap to be taken. Cycle timings are
shown in Table 2-15: Undefined Instruction Cycle Operations

2.5.13 Unexecuted Instructions

Any instruction whose condition code is not met will fail to execute. It will add one cycle to
the execution time of the code segment in which it is embedded (see Table 2-16:
Unexecuted Instruction Cycle Operations).

2.5.14 Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle one instruction may be using the data path while the next is being decoded
and the one after that is being fetched. For this reason the following table presents the
incremental number of cycles required by an instruction, rather than the total number of

Cycle Address Data Cycle Type
Processor

Mode

1 pc+8 (pc+8) S Old

2 pc+8 - I Old

 3 Xn (Xn) N undefined

4 Xn+4 (Xn+4) S undefined

Xn+8 S undefined

Table 2-15: Undefined Instruction Cycle Operations

Cycle Address Data Cycle Type

1 pc+8 (pc+8) S

pc+12 S

Table 2-16: Unexecuted Instruction Cycle Operations

Chapter 2 - ARM7 Microprocessor Issue 2.0

cycles for which the instruction uses part of the processor. Elapsed time (in cycles) for a
routine may be calculated from these figures which are shown in Table 2-17: ARM
Instruction Speed Summary. These figures assume that the instruction is actually
2-66 Butterfly Microcontroller Handbook

executed. Unexecuted instructions take one cycle.

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is determined by the
contents of Rs:

Multiplication by any number between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI m
cycles for 1<m>16.

Multiplication by 0 or 1 takes 1S+1I cycles

Multiplication by any number greater than or equal to 2^(29) takes 1S+16I cycles.
The maximum time for any multiply is thus 1S+16I cycles.

m is 2 if bits[32:16] of the multiplier operand are all zero or one, m is 4 otherwise.

b is the number of cycles spent in the coprocessor busy-wait loop.

If the condition is not met all the instructions take one S-cycle.

Instruction Cycle count Additional

Data Processing 1S + 1I for SHIFT(Rs)
+ 1S + 1Nif R15 written

MSR, MRS 1S

LDR 1S + 1N + 1I + 1S + 1Nif R15 loaded

STR 2N

LDM nS + 1N + 1I + 1S + 1Nif R15 loaded

STM (n-1)S + 2N

SWP 1S + 2N + 1I

B,BL 2S + 1N

SWI, trap 2S + 1N

CDP 1S + bI

LDC,STC (n-1)S + 2N + bI

MCR 1N + bI +1C

MRC 1S + (b+1)I +1C

Table 2-17: ARM Instruction Speed Summary

Chapter 3 - Diagnostic Broadcast (BBM)
Butterfly Microcontroller Handbook 3-1

3.1 Overview

During systems development, there is conflict between the requirement to maintain
maximum processor throughput, and the desire to interact with the system to achieve
maximum observability of the processor activity. Traditionally this has been resolved, in
part, by the use of expensive bond-out chips and In Circuit Emulation (ICE) support, to
monitor and debug application code running on processor. With the advent of low-cost
deeply embedded systems, further on-chip integration has increased, resulting in
constraints on system observability through a limited number of external package pins.
Additionally, the required capital investment to develop high speed analysis and
debugging systems based on traditional in-circuit emulation techniques has risen
dramatically, whilst the target market requires cheaper and more flexible tools.
Furthermore, system integration is increasingly performed at higher levels of the design,
through analysis and debugging of high level language source code and real time kernel
calls.

The BµILD implementation of diagnostic broadcast, using the Bµild broadcast module
(BBM) is intended to satisfy the requirement that maximum observability of the
components of the embedded system be provided without compromising the
performance of the processor or bus. In addition, the implementation seeks to provide a
straight-forward interface that can be used with industry standard development
equipment such as Logic Analysers.

Chapter 3 - Diagnostic Broadcast (BBM) Issue 2.0

3.1.1 Diagnostic Broadcast

In order to further facilitate real-time debugging of application code, Butterfly provides a
four bit diagnostic port, 'Bdiag ', which can be used to identify the current bus master

e

3-2 Butterfly Microcontroller Handbook

together with the type of cycle that is active during each cycle of the clock. In order to
save on device pins, this information is time multiplexed as shown below

During the low phase of 'Sclk ', 'Bdiag ' carries a binary coded representation of the bus
master which initiated the current Bµµild bus transaction. The encoded value for the
cycle type is output on 'Bdiag ' during the high phase of 'Sclk '.

The encoding for the bus master ID is shown in Table 3-1, while the encoding for th
cycle type is shown in Table 3-2

Table 3-1: Encoding of Bus Master ID for Diagnostic Broadcast

Code
Master

Bdiag<3> Bdiag<2> Bdiag<1> Bdiag<0>

1 1 0 0 ARM7 Core

1 1 1 0 DMA Controller

1 1 1 1 Bµild Broadcast
Module

Sclk

Bdiag
cycle

InfoInfo.

master

ID

cycle

InfoInfo.

master

ID

cycle

InfoInfo.

Figure 3-1: B µILD cycle and bus master details on 'Bdiag pins

Issue 2.0 Chapter 3 - Diagnostic Broadcast (BBM)

Code
Butterfly Microcontroller Handbook 3-3

Table 3-2: Encoding of Cycle Type for Diagnostic Broadcast

* The ARM7 processor distinguishes between sequential memory accesses and
non sequential memory accesses. This information can be used by a logic analyser to
determine what is happening during internal accesses to the macrocells.

** The Executed/Not-Executed information indicates whether the instruction at the
execute stage of the ARM7 pipeline is being executed. This does not refer to the data
that is present on the data bus. The reason for an instruction not executing is when that
instruction is conditional and the CPSR values do not match the condition. All other
cases will result in the Broadcast data indicating that the instruction has been executed.

Cycle Type
Bdiag<3> Bdiag<2> Bdiag<1> Bdiag<0>

1 1 1 1 Wait Cycle

1 1 1 0 Internal Cycle

1 1 0 1 Coprocessor Read Cycle

1 1 0 0 Coprocessor Write Cycle

1 0 1 1 Instruction Fetch - Non-Sequential* -
Not-Executed**

1 0 1 0 Instruction Fetch - Sequential* - Not-Executed**

1 0 0 1 Instruction Fetch - Non-Sequential* - Executed**

1 0 0 0 Instruction Fetch - Sequential* - Executed**

0 1 1 1 Word Read - Non-Sequential*

0 1 1 0 Word Read - Sequential*

0 1 0 1 Byte Read

0 1 0 0 Unused

0 0 1 1 Word Write - Non-Sequential*

0 0 1 0 Word Write - Sequential*

0 0 0 1 Byte Write

0 0 0 0 Unused

Chapter 3 - Diagnostic Broadcast (BBM) Issue 2.0

It should be noted that when the pipeline is flushed due to the program flow being
changed, the instructions that are already present within the pipeline are changed to
NOP (No OPeration) instructions and are still executed.
3-4 Butterfly Microcontroller Handbook

Chapter 4 - Phase Locked Loop (PLL)
GPS Butterfly Microcontroller Handbook 4-1

4.1 Overview

When data is supplied to a chip it is usually synchronised with a clock. Unfortunately the
clock signal path characteristics within a chip is typically different from that of the data. If the
data at the pins is removed at the same time as the active clock edge, It is therefore not
always possible to guarantee that data will be latched on the internal circuit. Also, for correct
operation, the mark:space ratio of the clock can be critical, especially at higher clock rates,
requiring the use an expensive external oscillator.

In order to help overcome these problems, Butterfly contains an internal Phase Locked Loop
(PLL) and a crystal oscillator driver. These can be configured to produce a clock, internal to
the device, which is phased-advanced such that its phase matches that of the clock applied
externally. They can also be used to produce a stable system clock from a low cost crystal.

4.2 Design features
• Provides a means of generating a phase shifted clock to minimise the requirements for

positive hold times on latched data inputs

• Generates a balanced Mark:Space ratio clock from an uneven Mark:Space ratio User-
clock input.

• Provides a means of generating a stable high frequency balanced Mark:Space ratio
clock from a low frequency commercial crystal. (Note: Under these circumstances a fixed
x4 multiplication factor is used and the clock generated is made available to the User).

• Option to bypass the PLL. This allows the use of clocks which are outside the PLL
capture range.

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

4.3 Architecture
4-2 GPS Butterfly Microcontroller Handbook

Figure 4-1: Architecture

Phase1

Phase2
PLL MODULE

sel

A

B
A/B

sel
div4 or 1

en
xtal driver

OSC MOD.
Oscen

Sclk (I/O)

Internal
clock

Oscin Oscout
CRYSTAL

Set_3V Pllpd

Sclk(I/O)

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

4.3.1 Interface Definitions

Table 4-1 shows the signal definition and names.
GPS Butterfly Microcontroller Handbook 4-3

*Note: See Table 4-2
Table 4-1: Signal definitions and Names

*Note: With all clocks stopped ("Power Down mode") and withOscin/Bypass held high, the PLL
quiescent current is typically 10 - 15 uA

Pad name Type Definition

Oscen* I/P 0 : Oscillator Disabled
1 : Oscillator Enabled

Set_3V I/P 0 : 5V supply
1 : 3V supply

Pllpd I/P 0 - PLL circuit operational
1 - PLL circuit powered down

Sclk I/O* I/P - User clock in (Oscin =1)
O/P - PLL Multiplied clock out (Oscin =0)

Oscin/Bypass I/P Crystal connection 1 OR
0 - Clock synchronisation mode
1 - PLL Clock bypass mode

Oscout I/P Crystal connection 2

Oscen Oscin/Bypass Operational mode Sclk- type

1 CRYSTAL Multiplication O/P - 4X Crystal

0 0 Synchronisation I/P - User Clkin

0 1 Clock bypass* I/P - User Clkin

Table 4-2: Clock Modes

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

4.3.2 Operating Modes.

In addition to Power Down mode, three modes of operation (see Table 4-2) are available
to the user, which can be summarised as follows:
4-4 GPS Butterfly Microcontroller Handbook

• Clock Synchronisation mode:
User clock supplied via Sclk pin. Internal balanced Mark:Space ratio clock
generated, phase locked to Sclk .

• Clock Multiplication mode (crystal):
Crystal connected to Oscin/Bypass and Oscout pins. x4 Crystal clock generated
with balanced Mark:Space ratio and supplied to the user via Sclk pin.

• Clock Bypass mode:
User clock is input via Sclk pin and routed directly to the system bus. There are no
PLL operating frequency limitations in this mode as the PLL core circuitry is
automatically powered down.

The Lock time of the PLL is up to 450us and is made up of the initial Lock which takes
approximately 300 µs and a further 512 cycles in Lock before the internal lock signal
goes active. Hence for 4MHz operation the Lock time is (512 x 250ns) + 300 µs = 428us.
From power up the PLL output clock will tend to start at a low frequency and speed up to
the Lock condition.

in Clock Multiplication and Clock Bypass mode, the output from the PLL is always
enabled whether it is in Lock or not.

In Clock Synchronisation mode the output clock from the PLL will only be enabled when
the PLL circuitry is in Lock. The only exception to this is with nSreset active (i.e. low),
when the PLL output will also be enabled. Hence it is recommended that nSreset is held
active at least for the period required to achieve Lock.

The PLL operational output ranges are as follows:

Figure 4-2: PLL Operational ranges

5V

3V

 |- - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - -|
 0 5 10 15 20 25 30

Frequency MHz

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

4.4 PLL Operational Description

In order to provide all the operating modes it is necessary to have three different PLL
circuit configurations.
GPS Butterfly Microcontroller Handbook 4-5

4.4.1 PLL for User Clock input.

When the oscillator circuit is disabled it is assumed that the User will supply an input
clock. The PLL circuit will be configured as shown in Figure 4-3. Its function is to
generate an internal clock which has a balanced Mark:Space ratio and is phase shifted
so that the need for hold time on data input is minimised.

Figure 4-3: PLL circuit for User supplied clock.

4.4.2 PLL for Oscillator Clock input.

When the oscillator circuit is enabled it is assumed that the User requires a clock to be
derived from a crystal via OSCMID. The PLL circuit will be configured as shown in Figure
4-4. It will generate an internal clock which has a balanced Mark:Space ratio and is at a
frequency of four times that of the crystal connected to the oscillator input. In this way it is
possible to generate a stable high frequency clock from a, low cost, low frequency
crystal.

Figure 4-4: PLL circuit for Crystal supplied clock.

Charge
pump etc.ph VCO div2

User Clkin Buffered clkout

Charge
pump etc.ph VCO div2

Buffered clkout

 div 4

CLKin from
oscillator module

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

4.4.3 PLL Clock bypass

In order that the PLL can be operated outside its frequency limits the ability to bypass the
PLL circuit has been included in the design. Figure 4-5 shows how the User clock input
4-6 GPS Butterfly Microcontroller Handbook

can be routed in to the chip via a mux which can be operated from the Oscin/Bypass
pin. When using this configuration it will be necessary to ensure that data inputs have a
+ve hold time with respect to the User clock.

Figure 4-5: PLL circuit for PLL bypass mode.

4.4.4 PLL Operational details.

Upon power up the PLL will operate in one of 3 distinct modes of operation:

• PLL bypass mode; defined as Oscillator output not used, PLL disabled, with the external
clock routed directly from the Sclk pin to the internal macrocells.
Note : In this mode, Pllpd must be inactive (’0’).

• Clock synchronisation; defined as Oscillator output not used and programmable divider
set to divide by one mode.

• Clock multiplication; defined as Oscillator output used and programmable divider set to
divide by four mode

In the last two cases it is necessary to select 3V or 5V operation via the Set_3V pin so
that the VCO operates correctly.

Lock detection

PLL Lock detection is indicated via an internal lock signal. The PLL should obtain initial
Lock within 300 µs, the detector then requires a further 514 cycles before it sets lock
high. The output remains high until 4 consecutive cycles of out of Lock are detected. This
protects against noise causing spurious loss of Lock.

PLL

MUX

ph

User clock (via Sclk input pin)

Clock output

Oscin/Bypass

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

Reset and Power down

One pin can be used for resetting the PLL macrocell:

• Pllpd is the PLL power down pin. A low on this pin means the PLL is operational, a high
GPS Butterfly Microcontroller Handbook 4-7

means it is powered down and the lock signal is reset.

It is important to consider the effect of the loss of the PLL clock output on the other
modules. If the chip is placed in a stand-by mode whereby power is to be saved BUT
instant response to an interrupt is required, then the PLL should not be powered down.
Also, in order that other modules can be reset correctly a clock must be present.
Therefore the Pllpd pin is not connected to the chip reset pin but is kept as a separate
signal which is specific to the PLL. In this way, if the chip is reset the PLL will remain
operational, allowing any synchronous resets to occur. In Clock Synchronisation mode,
the PLL lock signal is used in conjunction with the chip reset signal (nSreset) to gate the
PLL output clock. If nSreset is active i.e. low, then the PLL clock is always fed to the bus,
otherwise the clock is only enabled when lock is active. If the chip is to be powered down
completely then the PLL can be powered down BUT it must be remembered that the re-
Lock time is greater than 300 µs.

4.5 Oscillator Operational Description

OSCMID is an amplifier cell designed to be configured with external components as a
crystal oscillator (Pierce oscillator). The cell has been designed to drive crystals in the
range 1 to 10MHz and will function as an oscillator with 3V or 5V power supplies. Output
from the cell is via a Schmitt triggered gate and buffer stage which provides a square
wave output suitable for internal clocks. The feedback resistor Rf has been included
internally with the amplifier circuit.

4.5.1 Pin Descriptions

Oscin/Bypass - Crystal oscillator input terminal

Oscout - Crystal oscillator output terminal

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

Rf = 400kΩ OSCMID
4-8 GPS Butterfly Microcontroller Handbook

Figure 4-6: External Components

4.5.2 Selection of External Components

Once a crystal has been chosen, the load capacitors C1 and C2 can be selected. The
capacitor values used ensure correct operation of the Pierce oscillator - such that the
total loop gain is greater than unity. Correct selection of the two capacitors is very
important and it is strongly recommended that the following method is used to obtain
values for C1 and C2:

Loop gain equation

Although oscillations may still occur if the loop gain is just above 1, a loop gain of
between 4 and 5 is recommended to ensure that oscillations will occur across all
variations in temperature, process and supply voltage, and the circuit will exhibit good
start-up characteristics.

OscoutOscin/Bypass

Crystal: External Resistor, R

C2C1

Internal clk

1-10MHz

Chip Boundary
to PLL

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

eqn.1:

Coutgm Cout Cin+() 1 1 1–
GPS Butterfly Microcontroller Handbook 4-9

with eqn.2:

List of equation parameters

A = total loop gain (set between 4 and 5)

Cin = (C1 + 5x10-12) Farads

Cout = (C2 + 5x10-12) Farads

Zo = 18kΩ (output impedance of amplifier at 5V operation - typical*

gm = 1.05 mA/V (transconductance of amplifier at 5V operation -typical*

Zo = 50kΩ (output impedance of amplifier at 3V operation - typical*

gm = 0.625 mA/V (transconductance of amplifier at 3V operation -typical*

Rf = 400kΩ (internal feedback resistor)

ESR = Equivalent series resistance of crystal - given by crystal manufacturer (Ω)

f = fundamental frequency of crystal (Hz)

*(see Amplifier Specification in section 4.5.3)

Equations for choice of External Resistor, R

The crystal drive level (Pc) may be higher than the manufacturers figure. The drive level
can be reduced by adding a resistor in series with the crystal network (see Figure 4-1).
To calculate the power dissipated in a crystal the following equation can be used.

eqn.3:

Pc = power dissipated in crystal at resonant frequency (W)

A
Cin

Rf Cin()

Zin

Zo
------+ +×=

Zin
1

2πf Cout()2 ESR×
---=

PC

Vpp[]
8 Zin×

2
=

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

Vpp = Peak to peak output swing of amplifier:- 4.5V for Vdd=5V, and 2.7V for Vdd=3V.

f = frequency of crystal (Hz)
4-10 GPS Butterfly Microcontroller Handbook

Zin = crystal network impedance (see eqn.2)

If the power dissipation in the crystal is too high, eqn.4 may be used to calculate the
series resistor needed to reduce the crystal drive level. Having decided the maximum
power dissipation required in the crystal, a value for R can be calculated:

eqn.4:

A check is now made using a modified loop gain equation, eqn.5, to ensure that the
addition of R has not caused the loop gain to fall below a value of 4:

eqn.5:

Worked Examples of Component Selection

Capacitor Values

The table below contains recommended pairs of capacitors which can be substituted into
eqn.1 until a loop gain of between 4 and 5 is obtained. If two pairs of capacitor values
give a loop gain between 4 and 5, the pair that yield the highest load capacitance CL

should be used. {N.B. CL=(Cin.Cout)/(Cin+Cout)}

Note: Note, C1 and C2 are the capacitors used on the final oscillator design,
but Cin and Cout are the physical capacitor values that are substituted
into the loop gain equation. The difference between the capacitor
values is due to the parasitic capacitance (value 5pF) of the pins and
tracks associated with the circuit.

R
Vpp

2

Zin

2 P× c
---------------× Zin–=

A
Coutgm

Cin

Zin

Zin R+

Cout Cin+()
Rf Cin()

------------------------------ 1
Zin R+
----------------- 1

Zo
------++×

1–
×=

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

The equations given are used to calculate the components required for a 3.6MHz and a
10MHz crystal oscillator. Firstly, the gain for the two oscillators is found using eqn.1:
GPS Butterfly Microcontroller Handbook 4-11

(For Osc1 : Zo=18kΩ, gm=1.05e-3, Rf=400kΩ. For Osc2 : Zo=50kΩ, gm=0.625e-3,
Rf=400kΩ - see Amplifier Specification)

For Osc1 , from the table choose C1=33pF and C2=33pF for a gain between 4 and 5. For
Osc2 , from the table choose C1=27pF and C2=22pF (the highest value of CL, for a gain
between 4 and 5).

Checking power dissipation:

Osc1: C out is calculated as (33pF + 5pF) = 38pF, and Vpp=4.5V.

Using equations 2 and 3, the power dissipated is calculated as 374µW.

If a drive level of 200µW maximum is required eqn.4 can be used to calculate R:

Zin=6767Ω, hence R=2487Ω. To reduce the drive level to the crystal to 200µW (max.), a
2700Ω resistor is placed in series with the crystal network (See Figure 4-6:).

choice C 1 /pF C2 /pF Cin /pF Cout /pF CL /pF A - Osc1 A - Osc2

1 82 82 87 87 43.5 1.3 0.6

2 82 56 87 61 35.8 1.8 0.8

3 56 82 61 87 35.8 1.8 0.8

4 56 56 61 61 30.5 2.4 1.2

5 56 33 61 38 23.4 3.2 1.7

6 33 56 38 61 23.4 3.8 1.9

7 33 33 38 38 19 5.0 2.8

8 33 27 38 32 17.4 5.4 3.2

9 27 33 32 38 17.4 6.0 3.3

10 27 27 32 32 16.0 6.4 3.8

11 27 22 32 27 14.6 6.6 4.2

12 22 27 27 32 14.6 7.5 4.4

13 22 22 27 27 13.5 7.8 5

Osc1: 3.6MHz surface mount IQD crystal, ESR 200 Ω, Vdd=5V

Osc2: 10MHz Microprocessor Crystal, ESR 35 Ω, Vdd=3V

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0

Checking the value of gain after adding R:

From eqn.5, the gain after adding R has been reduced to 4.5. If the adjusted loop gain
had turned out to be less than 4, the next capacitor combination from the table would
4-12 GPS Butterfly Microcontroller Handbook

have to be chosen, and the loop gain and power values re-calculated.

The final choice of components for Osc1: C1=33pF and C2=33pF, R=2700Ω

4.5.3 Electrical Specification:

Parameters TYP Units Conditions

Start up time 20 ms Across frequency range

Table 4-3: Specification (3V and 5V nominal)

Parameter minimum typical maximum

gm mA/V 0.5 1.05

Zo kΩ 18 36

Table 4-4: Amplifier Specification: Vdd=5V (nom)

Parameter min. typical maximum

gm mA/V 0.31 0.625

Zo kΩ 50 80

Table 4-5: Amplifier Specification: Vdd=3V(nom)

Issue 2.0 Chapter 4 - Phase Locked Loop (PLL)

4.5.4 Application Notes

[1] On the printed circuit board, the tracking to the crystal and capacitors must be
made as short as possible. Other signal tracks must not be allowed to cross
GPS Butterfly Microcontroller Handbook 4-13

through this area. Ideally the component tracks should be ringed by a ground
track connected to the chip ground (0V). It is advisable to provide a ground
plane for the circuit to reduce noise.

Chapter 4 - Phase Locked Loop (PLL) Issue 2.0
4-14 GPS Butterfly Microcontroller Handbook

Chapter 5 - Power Control (POCO)
Butterfly Microcontroller Handbook 5-1

5.1 Overview

The Power Control module allows flexible clock management to modules in the system.

There are 3 programmable methods for Power control on Butterfly:-

RUN mode: module clocks can be selectively enabled and disabled.

STANDBY mode: All on-chip Bus activity is disabled, however clocks to each
module can be selectably enabled/disabled (programmable) until the occurrence
of a hardware interrupt which will then put the system back into RUN mode.

‘SLEEP’ mode for the ARM core: Causes the ARM7 to go into an inactive state
until a interrupt occurs.

Features of this module include:

• Individual module clock control in RUN mode

• Individual module clock control in STANDBY mode

• ‘SLEEP’ mode, to save power on the ARM core

• Minimal system wake-up latency

Chapter 5 - Power Control (POCO) Issue 2.0

5.2 Architecture
5-2 Butterfly Microcontroller Handbook

Figure 5-1: Block Diagram of POCO

5.3 Operational Description

5.3.1 System Reset/Power Up

Following an abnormal exception occurrence (e.g. a hard or soft system reset), the
registers will default to the following states:

a. All bits in the Power Mode Register (PMR) reset to ‘0’, i.e. Standby-Request-Bit
reset.

b. All bits in the Module Clock Enable Register (MCER) set to a ‘1’, i.e. all clock
channels ENABLED in RUN mode.

c. All bits in the Standby Mode Mask Register (SM MR) set to a ‘1’, i.e. all clock
channels ENABLED in STANDBY mode.

Nb: In order to minimise system static power consumption, the Reset input should not be
held low for prolonged periods, as this pin has a 100KΩ (nominal) on-chip pull-up
resistance.

C o n t r o l L o g i c

Standby
Request

Bit (Bits 30:0 reserved for future use)

Module Clock Enable Register (MCER)

Standby Mode Mask Register (SM MR)

Bit 31 Bit 0
Power Mode Register (PMR)

 B l o c k

Master Clock Out

Clock Enables

Sclk

32

BµILD Bus

Power Control Slave module

Issue 2.0 Chapter 5 - Power Control (POCO)

5.3.2 Run Mode Operation

In normal system operation the BµILD bus µwill be in RUN mode. Writing directly to the
Module Clock Enable Register will affect the clock enables of the modules at the
Butterfly Microcontroller Handbook 5-3

beginning of the next clock cycle. A ‘1’ in any 32-bit position will ‘enable’ the respective
module and writing a ‘0’ will ‘disable’ it. After Reset PoCo will enter Run Mode operation.

5.3.3 Standby Mode Clock Control Operation

Standby Mode allows the clock to one or more modules to be removed to save system
power. The Standby Mode Mask Register is used to define which modules will still be
clocked after Standby Mode has been entered.

Once the system is in STANDBY mode it will remain so until an interrupt occurs or the
Standby Request Bit in the register is reset. In either case the Power Control module
will request the system to ‘wake-up’ via the BBM. Note, when an interrupt occurs the
Standby-Request-Bit in the PMR will be automatically reset to ‘0’.

Before the Standby-Request-Bit is set in the Power Mode Register, the SM MR will
have normally been previously setup. A ‘1’ in any bit position will ‘enable’ (a ‘0’ will
‘disable’) the system clock to the associated channel when the module enters STANDBY
mode.

When the Standby-Request-Bit is set the PMR sends a Standby Request signal to the
BBM (Bµild Broadcast Module). When the BBM module receives this request it begins an
orderly system-wide shutdown procedure where all modules (masters and slaves)
remove themselves from the bus. When system shutdown is complete the Power Control
module will enable the SM MR at the beginning of the next clock cycle.

5.3.4 Low Power Sleep Mode

The ARM 7 core does not inherently contain a low power sleep mode; however, the
architecture does contain a mechanism for instruction set extension through the
coprocessor interface. Mitel has taken advantage of this interface to define a
coprocessor instruction set implementing different levels of low power operation.

This coprocessor is assigned coprocessor number 3, and performs Coprocessor Data
operations (CDP). In the implementation contained within the Butterfly microcontroller,
one coprocessor instruction is defined:

0 Suspend processor operation and halt processor clock until interrupt is received.
Upon receipt of interrupt, execute interrupt service routine, then resume the
normal flow of execution subsequent to the CDP instruction.

All other instructions for that co-processor, and all other coprocessor instruction types
are reserved.

Chapter 5 - Power Control (POCO) Issue 2.0

The assembly code for the SLEEP instruction is:

CDP p3,0,c0,c0,c0,#0

An interrupt impulse to the ARM will cause it to exit SLEEP mode. In certain
5-4 Butterfly Microcontroller Handbook

circumstances, this may cause the ARM to enter into an UNDEF (Undefined Instruction)
trap (to address 0x04). In order to return to normal program control, a MOVS
PC,R14_und instruction should be placed at address 0x04 (see Section 2.3.8,
Undefined Instruction Trap).

If the UNDEF trap is to be used for other purposes also, a test starting at location 0x04,
will be necessary, to identify if the trap was as a result of an interrupt whilst in SLEEP
mode.

Note: With the ARM processor in SLEEP mode, other Bus Masters (e.g.: DMAC) are still
able to utilize the bus.

5.3.5 Typical Configuration

By default, all modules will be enabled in the RUN mode and disabled in the STANDBY
mode.

Issue 2.0 Chapter 5 - Power Control (POCO)

5.4 Programmer’s Model

Table 5-1 summarizes the programmers register views.
Butterfly Microcontroller Handbook 5-5

Table 5-2 shows the bit allocation used to enable (1) or disable (0) each individual
module.

Note: Bit values for all registers will be set to a “1” at power up. Clock control bits for
any functions not needed in the application and for the reserved bits should be
initialised to zero after power up in order to minimise power consumption.

Address Offset
(Hexadecimal)

Function Read/Write
Reset
Value

+ 000 Power Mode Register (PMR) R/W 0x00

+ 004 Module Clock Enable Register (MCER) R/W 0xFFFF

+ 008 Standby Mode Mask Register (SMMR) R/W 0xFFFF

+ 00C-FFF Reserved x

Table 5-1: Programmers Register View

Bit Module Bit Module

0-5 Reserved 16-17 Reserved

6 INTC 18 PPI

7-11 Reserved 19-23 Reserved

12 DMA 24 UART1

13 Reserved 25 UART2

14 TIC1 26-31 Reserved

15 TIC 2

Table 5-2: Module Clock Enable Register (MCER)

Chapter 5 - Power Control (POCO) Issue 2.0

5.4.1 Basic Register Operation

Power Mode Register (PMR)
5-6 Butterfly Microcontroller Handbook

This register allows overall control of the Power Control module. The only programmable
bit is the ‘standby request’ bit (bit 31). Writing a ‘1’ (or ‘0’) into this bit position ‘enables’
(or ‘disables’) STANDBY mode. The remaining fields have been reserved for possible
future use and return a ‘0’ if read.

Module Clock Enable Register (MCER)

This register contains 32 ‘channel enables’ for the system in normal RUN mode. Writing
a ‘1’ (or ‘0’) into any bit position in this register ‘enables’ (or ‘disables’) the associated
channel at the beginning of the next clock cycle. Details of how this register is mapped to
the individual modules are provided in Table 5-2.

STANDBY Mode Mask Register (SM MR)

This register contains 32 ‘channel enables’ for the system when in STANDBY mode.
Writing a ‘1’ (or ‘0’) into any bit position in this register will enables (or disable) the
associated channel. Details of how bits within this are mapped to the individual modules
are provided in Table 5-2.

Note, that writes to the SM MR will be disabled when the Standby-Request-Bit in the
PMR is set.

Chapter 6 - Programmable Peripheral Interface (PPI)
Butterfly Microcontroller Handbook 6-1

6.1 Overview

The Programmable Peripheral Interface consists of 8 bidirectional data signals which
may be individually set, reset or read. Alternatively, data signals may be grouped
together to form one byte-wide bidirectional parallel port. In this mode, additional
dedicated strobe signals are provided for hand-shaking with external components.
Features of this module include:-

• Port direction fully programmable

• Static/strobed operation

• Interrupt or polled operation

6.2 Architecture

Figure 6-1: PPI Module Block Diagram

BµILD Bus
8

E
xt

er
na

l S
ig

na
ls

nPstrb

Pibf
nPobf

nPack

Pdat<7:0>

Programmable
Peripheral
Interface

Chapter 6 - Programmable Peripheral Interface (PPI) Issue 2.0

6.3 Operational Description

Static I/O (Mode-0)
6-2 Butterfly Microcontroller Handbook

In this mode, the dedicated input and output control pins are inactive. The direction of
flow for each data bit is set in the Data Direction Register (DDR) . If a Data-pin is set up
as an output, the value in the corresponding bit of the Data Output Register (DOR) is
set onto the associated port data pin. If the pin is configured as an input, the output driver
for that pin will be trisected. Reading the Data Input Register (DIR) gives the values
being set onto the port pins, that is, the value read reflects the logic levels at the pins for
each bit of the port.

The DIR is latched by the rising edge of the system clock, Sclk, during a DIR read
operation, and changes in the DOR are reflected on the port pins on the falling edge of
Sclk, which terminates the write access.

In Mode-0, Interrupts from the PPI module are disabled.

Strobed I/O (Mode-1)

The direction of data flow for each bit of the port can be individually set using the DDR,
but in Mode-1 the latching of inputs and driving of outputs are determined by the port
control signals.

Strobed Data Output

When data is written to the DOR, the Output Buffer Full (nPobf) pin is set low to
indicate to the external device that there is data present in the port. Port bits which are
set up as outputs, are held tri-stated until the external acknowledge signal (nPack) is set.
Once nPack is set by the external device, the data values held in the corresponding
DOR bits are presented on the port pins. When nPack is again reset, the port pins return
to tri-state, the nPobf line is reset and the Output Buffer Empty flag (OBE) in the status
register is set. An OBE interrupt is also generated - unless disabled by the INTEN bit in
the Control/Status register (CSR) . Both the flag and the interrupt are reset by writing
the DOR.

Strobed Data Input

Issue 2.0 Chapter 6 - Programmable Peripheral Interface (PPI)

If an external device wishes to clock data into the port, it should set the strobe line
(nPstrb) once the data on the relevant connected port data pins is valid. This action
causes the Input Buffer Full line (Pibf) to be set. The data is latched into the DIR on the
Butterfly Microcontroller Handbook 6-3

rising edge of nPstrb , which also sets the IBF flag in the status register and generates
an IBF interrupt (unless disabled). The interrupt and status bit are both reset by the rising
edge of Sclk during a DIR read. The Pibf line is cleared by Sclk falling at the end of the
read.

Bi-directional (Mode-2)

The data flow is fully bi-directional and controlled by the port control pins nPstrb , nPack ,
Pibf and nPobf , with the DDR being ignored.

To transfer to an external device, data is first written to the DOR, causing the nPobf line
to be set and the OBE flag/interrupt to be reset. The external device then drives nPack
low which enables the data drive to the port pins. Once the data has been latched by the
external device, nPack is reset, setting the port data pins to tri-state, resetting the nPobf
line and setting the OBE flag and interrupt.

For the external device to transfer data into the port, it must first drive the data onto the
port pins. It then sets nPstrb low, which causes the Pibf line to be set high by the port.
The nPstrb line is then reset, latching the data from the port pins into the DIR and setting
the Pibf flag/interrupt. Reading the DIR resets the flag, interrupt and the Pibf line

Note: In both modes 1 and 2 there are certain limits on accessing the DOR and the
DIR read. If the output register is being read by the external device (i.e. nPack
set) then the DOR cannot be written to. If the input register is being written to
by the external device (i.e. nPstrb set) then the DIR cannot be read.
Also, if the external device sets nPack low to read data from the port, the
outputs will only be set if the output register is full, i.e. when nPobf is set. This
enables ports to be linked for automatic data transfers by linking the data
buses together and cross-coupling both the nPstrb and nPobf pins and the
nPack and Pibf pins.

Chapter 6 - Programmable Peripheral Interface (PPI) Issue 2.0

6.4 Programmer’s Model

The PPI module contains 12 registers in total, 4 for the 8-bit port and an additional 8
registers reserved for future use. All registers are accessed as 32-bit words with unused
6-4 Butterfly Microcontroller Handbook

bits set to logic zero. Table 6-1 presents the programmers view of the register set.
Addresses are specified as offsets from the system-defined PPI base address.

6.4.1 Data Direction Register (DDR)

This register controls the direction of data transfer on the port I/O pins. It is used only in
operating modes 0 and 1. If a bit is set (1) then the corresponding pin of the port is an
input, if it is reset (0) then the pin is an output. The direction of the most significant I/O
line is controlled by the most significant bit in the register.

Figure 6-2: Data Direction Register (Read/Write)

Address Offset
(Hexadecimal)

Function
Register

Size
(bits)

R/W
Reset
Value

+ 000 Data Direction Register (DDR) 8 RW 0xFF

+ 004 Data Input Register (DIR) 8 R Undefined

+ 008 Data Output Register (DOR) 8 RW 0

+ 00C Control/Status Register (CSR) 8 RW 0

+ 010 - +FFC Reserved - -

Table 6-1: Programmers Register View

15 031 7

DDR (8-bit reg)0 0 0 0 0 0 0 00 0

Issue 2.0 Chapter 6 - Programmable Peripheral Interface (PPI)

6.4.2 Data Input Register (DIR)

This register reflects the current data on the port I/O pins – the value of the most
significant I/O line occupying the most significant bit in the register. In static mode, data is
Butterfly Microcontroller Handbook 6-5

latched from the port I/O pins into the DIR by a read operation; in strobed and bi-
directional modes the data is latched by nPstrb rising. For port I/O pins which are
currently defined as outputs (by the DDR) the corresponding DIR bit reflects the data
value set from the DOR.

The 8-bit port has a corresponding 8-bit DIR.

Figure 6-3: Data Input Register (Read Only)

6.4.3 Data Output Register (DOR)

This register holds the value which is to be set out on those port I/O pins which are
defined as outputs – the most significant bit in the register driving the most significant
port I/O line. In static mode, any change in the DOR is immediately reflected on the
output pins. In strobed and bi-directional modes, the DOR can only be updated when
nPack is clear (i.e.: no external READ being performed). Subsequent assertion of nPack
causes the updated DOR value to be presented to the ports’ output pins.

The 8-bit port has an 8-bit DOR.

Figure 6-4: Data Output Register (Read/Write)

6.4.4 The Control Status Register (CSR)

This register contains the configuration and status information for the port. There are
three such registers, one for the 8-bit port and two reserved for future use.

8-Bit Port Control Register

The 8-bit port control register is defined as follows:

15 031 7

DIR (8-bit reg)0 0 0 0 0 0 0 00 0

15 031 7

0 0 0 0 0 0 0 00 0 DOR (8-bit reg)

MODE

731 045

OBE IBF

13

R/W R/W R R

6

0 0 INTEN

Chapter 6 - Programmable Peripheral Interface (PPI) Issue 2.0

Figure 6-5: 8-Bit Port Control Status Register (CSR)

a. A single bit (INTEN) which controls the generation of interrupts from the port. When
set, interrupts are enabled. When reset, interrupt generation is disabled.
6-6 Butterfly Microcontroller Handbook

b. A 2 bit field (MODE) which controls the current port’s operating mode.

• MODE=00 Static I/O mode (Mode-0)

• MODE=01 Strobed I/O mode(Mode-1)

• MODE=1x Bi-directional I/O (Mode-2, x: Do not care)

c. A single read only bit (OBE) which indicates that the data output register (DOR) is
empty. This flag may be reset by placing new data into the DOR.

d. A single read only bit (IBF) which indicates that the data input register (DIR) contains
new data. This flag may be reset by reading the data value from the DIR.

6.5 Timing relationship diagrams

The diagrams in Figure 6-6 and Figure 6-7 show the relationship between the control
signals used/generated when the port is in mode 1 or 2 (nPstrb, nPack, nPobf and
Pibf), the data signals on the Port Data bus, and register access by the processor.

Port Data Output (Modes 1 & 2)

When the processor writes data to the DOR, nPobf will be set low, and after an external
device sets nPack low, the data in DOR is output on the Port Data bus. When nPack is
set high by the external device, nPobf is set high (inactive) and a (maskable) processor
interrupt is generated setting the OBE flag in the Interrupt Source Channel Register
(Table 1-7). This interrupt is reset by writing data to the DOR. The Ports Data Bus is
returned to a high impedance state when nPobf is set high.

Port Data Input (Modes 1 & 2)

After an external device has put data onto the port data bus, it must drive nPstrb low and
then high again. The rising edge of nPstrb latches the port data into the DIR and the
following falling edge of nPstrb causes Pibf to be set high. A (maskable) processor
interrupt will then result setting the IBF flag in the Interrupt Source Channel Register
(Table 1-7). This interrupt is reset by the reading of DIR by the processor. Once the DIR
has been read Pibf is reset.

Issue 2.0 Chapter 6 - Programmable Peripheral Interface (PPI)

DOR
Butterfly Microcontroller Handbook 6-7

Figure 6-6: Port Data Output (Modes 1 and 2)

Figure 6-7: Port Data Input (Modes 1 and 2)

nPobf

nPack

Port Data

Port Data

nPstrb

DIR

Pibf

Chapter 6 - Programmable Peripheral Interface (PPI) Issue 2.0

6.6 External Interface

Refer to Appendix B for further details.
6-8 Butterfly Microcontroller Handbook

Table 6-2 provides information on external interface pins.

Dir = Direction i.e. input (I), output (O) or bidirectional (B).

Pin Name Function Dir Description

Pdat<7:0> Port Data B Port data input/output

nPstrb Port Strobe [0] I Effective in Modes 1 & 2 only. External control input used to
latch data into the Data Input Register (DIR) . Data is
latched on the rising edge.

nPack Port Acknowledge
[0]

I Effective in Modes 1 & 2 only. External control input used to
clock data from the Data Output Register (DOR) onto the
Pdat<7:0> pins. When high, Pdat<7:0> are tri-stated.

nPobf Port OBF [0] O Effective in Modes 1 & 2 only. External control output When
active, indicates new data is ready in the Data Output
Register (DOR)

Pibf Port IBF [1] O External control output reflecting the status of the input
register. Set indicates valid data in the register.

Table 6-2: PPI Module External Pin List Description

Chapter 7 - Memory/Peripheral Controller (MPC)
Butterfly Microcontroller Handbook 7-1

7.1 Overview

The MPC acts as the main gateway between internal and external bus systems. The
external bus has to be capable of interfacing to the multitude of standard parts which
could be used in conjunction with an ARM microcontroller within embedded applications.

Features include:

• Performs accesses to memories (ROM, SRAM), and peripherals (ADC's, DAC's, UART's
etc.).

• Generates all control signals to access external components (chip-selects, write-enables,
output-enable, etc.)

• Dynamic bus sizing, so that only accesses of the correct width are directed at the external
component (8/16/32 bits - data width).

• Programmable wait state generation when accessing a specific external device.

• Programmable “stop wait state” generation, allowing for the slow turn-off time of slower
external devices (e.g. ROM).

• Can perform an external access with zero wait states at up to the maximum system clock
speed.

• Supports “fly-by” DMA mode of operation so that internal->external, external->internal,
and external->external modes are supported.

• Supports both big and little endian operation.

• SWAP function allows RAM devices connected to nCs3 (which is mapped to external
area 4 at start up) to be switched to external area 1 (see section 1.3.1.2 on page 7)

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

7.2 Architecture

The diagram in Figure 7-1 shows the various functional blocks within the MPC. The
functions of the various external pins are described more fully in Table 7-7, “External Pin-Out
7-2 Butterfly Microcontroller Handbook

Description” .

7.3 Operational Description

In order for the microcontroller to do useful work, it must interface successfully to
external memory and peripheral subsystems. The Memory & Peripheral Controller
(MPC) is designed to provide a “glueless” interface to common memory sub-systems,
such as ROM, EPROM & SRAM. It is also designed to interface to many types of
external peripheral interface functions, ranging from analogue interfaces such as A/D
and D/A convertors, to networking interfaces such as Serial Communications Controllers
and Ethernet ports.

The MPC provides a standard functional set of external interface signals, for which it
derives the appropriate timing relationships in order to exchange data between the
microcontroller and external devices.

Figure 7-1: MPC Functional Blocks

SdataSbigendian

Configuration Register Area-2

Configuration Register Area-3

Configuration Register Area-4 (RW) +C

(RW) +8

(RW) +4

Internal Bus Interface

Configuration Register Area-1 (RW) +0

Address Generator

Programmable wait state generator

Dynamic Data Path

Sr_size Swait nScs nSoe nSwe Sadd

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

Throughout this section, please refer to the MPC Configuration Register format
described in Figure 7-11: Single Register Slice
Butterfly Microcontroller Handbook 7-3

7.3.1 Memory Areas

The MPC is able to access up to four memory areas with varying characteristics. This
allows a memory subsystem to be constructed using most appropriate types of memory.
For example, one memory area could be set-up to contain slow ROM, another for fast
SRAM, and a third for an external peripheral.

The characteristics of each memory area are set-up in a Configuration Register (see
Figure 7-1). The parameters that can be varied include:

• automatic wait state generation, or wait indication supplied by memory subsystem

• number of wait states

• number of stop states (to allow slow memory/peripherals time to turn off)

• size of memory (e.g. 8, 16 or 32 bits wide)

• read only or read/write

• memory or peripheral

• capability to accept writes to less than the whole memory width

These parameters are described more fully in the following sections.

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

7.3.2 Signal Relationships

Figure 7-2 shows the relationship of external signals of the MPC.
7-4 Butterfly Microcontroller Handbook

Figure 7-2: MPC External Interface Signals

During a read transaction the address (Sadd) and chip selects (nScs [3:0]) are
generated shortly after the falling edge of the system clock (Sclk). The write enables
(nSwe [3:0]) are cleared to a high state and the output enable (nSoe) is asserted. The
external memory must then put the data on the bus (Sdata) within a prescribed set-up
time before the next falling edge of the system clock.

The address and chip selects behave similarly in a write transaction. However the output
enable is turned off at the start of the transaction. The write enables and the data to be
written to the memory appear shortly after the first rising edge of the clock. After the end
of the cycle the write enables are cleared first to avoid any error in the transaction. The
data, address and chip selects are then allowed to change for the next cycle.

During adjacent read accesses to the same memory area, the signals nScs [0-3] and
nSoe will remain permanently enabled. The new access is indicated solely by a change
of address.

Note A : During a write cycle data becomes valid during the high phase of Sclk, however
in order to ensure minimum propagation delay the Sdata drivers are enabled during the
low phase. The data driven during this low phase will be the same as that supplied by
any preceding read cycle and any potential clash of Sdata is avoided.

Read Transaction 1 Read Transaction 2 Write Transaction

Taddr
Taddrh

Taddrh

Tncs
Tncsh

Tncsh

Tnweh
Tnwe Tnweh

Tnoe Tnoeh Tnoeh

Tdisu
Tdih

Tdo
Tdoh

Tdz

Note A

Sclk

Saddr

nScs

nSwe

nSoe

Sdata

Swait

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

7.3.3 Wait State Insertion

While maximum system operating bandwidth is achieved when each memory or
peripheral reference is completed in one clock cycle, it is often the case that wait states
Butterfly Microcontroller Handbook 7-5

must be inserted to match the microcontroller speed to the timing parameters of the
memory or peripheral being referenced. This may be the access time of the device, or
some other timing parameter, such as data bus turn off time.

Automatic Wait State Generation

In most cases, the relationship between the clock period and the memory timing
parameter is well understood. The MPC has a programmable wait state generator that
can be set-up to introduce a number of wait states into each memory access. Two
parameters are defined:

• the number of wait states required for the first and subsequent accesses to a memory or
peripheral device, or wait state (CRx[31:28]) .

• the number of wait states for which the data bus must be idle after the last access to a
memory or peripheral device, or stop wait (CRx[27:24]) .

The use of stop wait states is to allow for slow turn-off memories. If the next memory
access was initiated before the memory devices have turned off from the previous
transaction, there will be contention on the data bus. Therefore stop wait states are used
to prevent another external memory access being started until after the previously
addressed devices have turned off.

The application programmer must calculate the number of wait states or stop wait states
required for the particular memory or peripheral connected to that memory area. An
example of the effect of wait and stop states is shown in Figure 7-3 . This shows a single
wait state, combined with a single stop wait state. The effect of this is that the memory
access in total takes three clock cycles.

However, if in the clock cycle following the read transaction there is no access to external
memory, the internal operation will be continue as normal. The operation of Butterfly is
only stalled during stop wait states if the next access is also to external memory.

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

First cycle of next
Read Transaction
7-6 Butterfly Microcontroller Handbook

Figure 7-3: Effect of Wait and Stop States on a Read Access

During read transactions the control signals (Sadd , nScs , nSoe and nSwe) are
maintained at the same level throughout any wait states, until the end of the completion
cycle. During any subsequent stop states, the chips select (nScs) and output enable
(nSoe) signals are cleared, and the address may take on any value.

Write transactions behave in a similar manner with respect to wait states, except that
nSwe becomes active after the first rising edge of Sclk in the transaction, as described
in Section 7.3.2. It then remains active until the end of the completion cycle. However,
stop wait states have no effect, since the Butterfly drives the data bus during write cycles,
Therefore there is no necessity to allow a long turn-off time to prevent bus contention.

Wait State Completion Cycle Stop Wait State

Tdisu

Taddr Taddrh Taddr

Tncs Tncsh Tncs

Tnweh Tnwe

Tnoe Tnoeh Tnoe

Tde(mem)
Tdih

Tdz(mem)

Tde(mem)

Sclk

Sadd

nScs

nSwe

nSoe

Sdata

Swait

access

Tde(mem): memory turn on time
Tdz(mem): memory turn off time

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

External Wait State Generation

In some cases, it cannot be determined at initialisation how many clock cycles are
required to access a particular memory-mapped device. This is particularly true of
Butterfly Microcontroller Handbook 7-7

bridging devices, which give access to another bus, where access latency is dependent
on the current conditions on the remote bus. In this case, wait states must be applied
externally, by the assertion of the Swait signal.

If the external wait state insertion signal is to be used, the Configuration Register
corresponding to that memory-mapped device must be programmed for external wait
states; auto wait (CRx[5]) must be clear. An initial default wait state is inserted into the
transaction when external wait states are indicated. Swait is used to indicate how many
additional wait states should be inserted.

Swait is setup initially to the rising edge of the clock in the first cycle following the initial
default wait state. While Swait is held high, the system will keep inserting wait states into
the transaction. This is shown in Figure 7-4 .

When the transaction is to complete, Swait must be cleared. It should be cleared after
the falling edge at the start of the cycle in which the access is to complete. For correct
functioning Swait should be clear before the rising edge of Sclk in the middle of that
cycle, as shown in Figure 7-4 .

Figure 7-4 shows the timing required for Swait during a read transaction. The control
signals (Sadd , nScs , nSoe and nSwe) are maintained at the same level throughout the
transaction until the end of the completion cycle. Write transactions behave in a similar
manner, except that nSwe becomes active after the first rising edge of Sclk in the
transaction, as described in Section 7.3.2. It then remains active until the end of the
completion cycle.

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

Read Transaction

Default Wait State External Wait State Completion Cycle
7-8 Butterfly Microcontroller Handbook

7.3.4 Instruction Fetches from Memory

Since the Butterfly microcontroller contains no internal memory, all processor
instructions must be fetched from external memory. The ARM processor has a 32-bit
instruction set; therefore 32-bit instructions must be fetched from the external memory
sub-system.

However, it is not a requirement that the external instruction memory be configured as
32-bit memory, and it may be desirable from cost or size considerations to configure the
memory as 16-bit or 8-bit memory. In these cases the MPC must reconstruct the 32-bit
instructions from the data fetched from the memory subsystem. This function is
performed by the dynamic data path sub-block within the MPC (see Figure 7-1).

It does this by performing multiple read accesses to the memory system, reconstructing
the instruction in an internal buffer. When the instruction is complete, the MPC signals
that the instruction fetch is over and passes the complete instruction back to the
processor. Hence fetching an instruction from 16 bit memory will require two memory
accesses, and from 8 bit memory will require 4 memory accesses.

Tdisu
Tdih

Twsu
Twsu

Taddr Taddr

Tncs Tncsh

Tnweh

Tnoe Tnoeh

Twh

Sclk

Sadd

nScs

nSwe

nSoe

Sdata

Swait

Figure 7-4: MPC Externally Generated Wait State Insertion

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

Note that each read access to the memory sub-system may take one or more clock
cycles, depending on the characteristics of the memory in use, and the way it has been
configured in the MPC Configuration Register . The diagrams in Figure 7-5 , Figure 7-6
Butterfly Microcontroller Handbook 7-9

and Figure 7-7 show instruction fetches from a memory system requiring one wait state
for each memory access. In this example wait states (CRx[31:28]) should be set to
[0001] .

Instruction Fetches from 32-bit Memory

In this case, each instruction is fetched in its entirety. Only one memory access is
required per instruction. Data Size (CR[1:0]) must be programmed to [10] in the
appropriate Configuration Register .

Instruction Fetches from 16-bit Memory

In this case, each instruction is fetched in two halves. Each half is fetched in consecutive
memory accesses, lowest 16-bits first. Data Size (CR[1:0]) must be programmed to [01]
in the appropriate Configuration Register

Sclk

nScs

NSoe

Sdata

Sadd

[31:0]

Figure 7-5: Instruction Fetch from 32-bit Memory (one wait state)

n

Sclk

nScs

NSoe

Sdata

Sadd

Figure 7-6: Instruction Fetch from 16-bit Memory (one wait state)

n n+2

[15:0] [31:16]

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

Instruction Fetches from 8-bit Memory

Here each instruction is fetched one byte at a time. Each byte is fetched in consecutive
memory accesses, lowest order byte first. Data Size (CR[1:0]) must be programmed to
7-10 Butterfly Microcontroller Handbook

[00] in the appropriate Configuration Register .

Since instructions are only fetched from memory, Memory or Peripheral (CRx[2])
should be set. If the associated memory area only contains instructions and constants,
and the variable data is maintained in a separate memory area, then Read Only
(CRx[4]) may be set. Illegal writes to this memory area will then cause a data abort
exception, as described in Chapter 2: The ARM Processor.

7.3.5 Data Transfers to and from Memory

While instructions are defined to only be 32-bit operands, data operands may be either 8-
bit, 16-bit or 32-bit in size. Similarly, the external memory or peripheral device may be
either 8-bit, 16-bit or 32-bit in size. Some adaptation of the read or write data must
therefore be done to translate the operand size into the memory or peripheral size. The
mechanism employed depends on whether a read or a write operation is being
performed.

Data Read from Memory

If the external memory size is greater or equal to the operand size, then the operand may
be read from memory in a single memory access. However, if the external memory size
is smaller than the operand size, then operand packing is required.

Operand packing describes the process in which the MPC performs multiple bus
accesses to an external memory device to build up the required quantity of data for the
requested transaction (using Data Size (CRx[1:0]). This is done in a similar manner to
the way that 32 bit instructions are built up, as described in Section 7.3.4.

Sclk

nScs

NSoe

Sdata

Sadd

Figure 7-7: Instruction Fetch from 8-bit Memory (one wait state)

n

[7:0] [31:24]

n+1 n+2 n+3

[15:8] [23:16]

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

For example the MPC would carry out four 8-bit accesses to an 8-bit external memory in
order to read a 32-bit data operand. In a similar manner the MPC would perform 2
accesses for 16-bit external memory.
Butterfly Microcontroller Handbook 7-11

The multiple read accesses required by operand packing rely on the external device
residing in contiguous memory space. The device must be capable of handling the
address bus changing (for loading the relevant the bytes or half words, whilst nSoe and
it’s chip select line remains active.

When the operand size requested is smaller than the memory data width, the MPC reads
the entire memory word, ignoring the bits that are not required. The way in which read
accesses are broken down is shown in Table 7-1.

Data Write to Memory

Data writes are handled in a similar manner to data reads. Hence a 32 bit write to an 8 bit
memory will be broken down into four consecutive 8 bit writes. However, when the
operand size is smaller than the memory width, it may not be possible to perform the
requested transaction. This is because the memory may be incapable of accepting a
write to less than the full memory width. In this case, the Sub Memory Write bit (CRx[3])
must be cleared. Sub memory width writes to this memory area will then cause a data
abort exception.

If the memory is capable of accepting sub memory width writes, the Sub Memory Write
bit (CRx[3]) should be set. The MPC uses separate write enable signals (nSwe[3:0]) to
address each byte of the memory word. This allows it to perform 8 or 16 bit accesses to
32 bit wide external memories, and 8 bit accesses to 16 bit wide external memories. This
is illustrated in Figure 7-8 :

Operand
Size

Memory Size

8 bit 16 bit 32 bit

8 bit Single 8 bit read Single 16 bit read,
(top 8 bits ignored)

Single 32 bit read
(top 24 bits ignored)

16 bit Two consecutive 8 bit
reads, packed to
form16 bit value.

Single 16 bit read Single 32 bit read
(top 16 bits ignored)

32 bit Four consecutive 8 bit
reads, packed to form

32 bit value.

Two consecutive 16 bit
reads, packed to form

32 bit value

Single 32 bit read

Table 7-1: Data Read from Memory

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

nScs x
7-12 Butterfly Microcontroller Handbook

The way the MPC writes to various widths of memory is summarized in Table 7-2:

7.3.6 Endian configuration

The Sbigendian input determines whether the MPC treats words in memory as being
stored in “Big Endian” or “Little Endian” format. This reverses the order in which
individual bytes are stored within a larger data value.

In the Little Endian scheme (i.e. when Sbigendian is clear) the lowest numbered byte in
a word is considered to be the least significant byte of the word and the highest
numbered byte is the most significant. Byte 0 of the memory system should be
connected to data lines 7 through 0 in this scheme.

Operand
Size

Memory Size

8 bit 16 bit 32 bit

8 bit Single 8 bit write Single 8 bit write
(if the memory can accept sub-width writes)

16 bit Two consecutive 8 bit
writes

Single 16 bit write Single 16 bit write
(if the memory can
accept sub-width

writes)

32 bit Four consecutive 8 bit
writes

Two consecutive 16 bit
writes

Single 16 bit write

Table 7-2: Data Write to Memory

nSwe1

nSwe0

nSwe2

nSwe3

8 bit SRAM

8 bit SRAM

8 bit SRAM

8 bit SRAM

Addr / Data
M

P
C

In
te

rf
ac

e

Figure 7-8: Writing to Individual Bytes of Memory

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

Little Endian

Higher Word
Butterfly Microcontroller Handbook 7-13

Figure 7-9: Little Endian addresses of bytes within words

In the Big Endian scheme (Sbigendian is set) the most significant byte of a word is
stored at the lowest numbered byte and the least significant byte is stored at the highest
numbered byte. Byte 0 of the memory system should therefore be connected to data
lines 31 through 24.

Figure 7-10: Big Endian addresses of bytes within words

Load and store are the only ARM7 instructions affected by the endian type, see Little
Endian Configuration and Big Endian Configuration in Section 2.4.7, Single Data
Transfer (LDR, STR) for more details.

The Endian type will also affect the use of DMA operations. Care should be taken to
ensure that DMA operations do not attempt to transfer data from memory written with
one endian scheme to memory written with the other scheme. This will result in a
scrambling of the correct byte order.

Address 31 24 23 16 15 8 7 0 Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower
Address

Big Endian

Higher
Address 31 24 23 16 15 8 7 0

Word
Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower
Address

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

7.3.7 Access to Non-Aligned Memory Addresses

Non-aligned accesses are defined as accesses where the address is not an integer
multiple of the data size in bytes. For example, if x is a multiple of four, a 32 bit access to
7-14 Butterfly Microcontroller Handbook

address x is aligned, whereas a 32 bit access to address x+1 is non-aligned.

The MPC does not handle non-aligned memory accesses. If an access is made to a non-
aligned address, the MPC will ignore the non-alignment. The address is rounded down to
the next nearest aligned address, and the data returned is the value starting from this
aligned address.

Using the previous example, if a 32 bit access is requested from address x+1, the MPC
will return the aligned data starting from address x. The same response will be obtained
by a 32 bit access to address x+2 and x+3. When the address is x+4, this is aligned
again, and the MPC returns the data starting from address x+4.

This is summarised in the Table 7-3 below:

Address Offset
Data Bytes Returned

8 bit access 16 bit access 32 bit access

0 byte 0
bytes 0, 1

bytes 0, 1, 2, 3

+1 byte1

+2 byte 2
bytes 2, 3

+3 byte 3

+4 byte 4
bytes 4, 5

bytes 4, 5, 6, 7

+5 byte 5

+6 byte 6
bytes 6, 7

+7 byte 7

Table 7-3: Non-Aligned Address Accesses

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

7.4 Programmer’s Model

Table 7-4 displays the register views for this module. All registers are accessed as 32-bit
words. Addresses are specified as an offset from the system-defined base address.
Butterfly Microcontroller Handbook 7-15

The external memory areas for which the chip select signals nScs[3:0] become active
are listed in Table 7-5.

7.4.1 MPC Configuration Registers

32-bit wide registers are supplied with each chip select area of the external memory
map. A single register slice is shown in Figure 7-11 :

Figure 7-11: Single Register Slice

The Data Size[1:0] bits indicate to the MPC control state machine how large the external
data bus is which connects to the external component.

Address Offset
(Hexadecimal)

Function
Reset
Value

R/W

+ 000 Area 1 Configuration Register 0xFF000034 RW

+ 004 Area 2 Configuration Register 0xFF000034 RW

+ 008 Area 3 Configuration Register 0xFF000034 RW

+ 00C Area 4 Configuration Register undefined RW

Table 7-4: Programmer’s Register View

Address (Hexadecimal) Active Chip Select
External Memory

Area

0000 0000 --> 1FFF FFFF nScs[0]/nScs[3]* Area 1

2000 0000 --> 3FFF FFFF nScs[1] Area 2

4000 0000 --> 5FFF FFFF nScs[2] Area 3

6000 0000 --> 7FFF FFFF nScs[3]/nScs[0]* Area 4

Table 7-5: MPC nScs External Decode Map
* WhenSWAP = 1 in System Configuration Register (See Section 1.3.1.2)

 Memory
 or
Peripheral

Sub
Memory

Write

Read
Only

Reserved

 (18 bits)

Stop Waits

(4 bits)

Wait States

(4 bits)

Auto
wait Data Size

31 28 27 24 23 6 5 4 3 2 1 0

(2 bits)

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

The Memory Or Peripheral bit indicates to the MPC what type of accesses are
accepted by the external component. Peripheral components are defined as being
unable to accept operand packing or sub memory width accesses. Therefore an area
7-16 Butterfly Microcontroller Handbook

defined with the Memory Or Peripheral bit cleared will return a data abort if the operand
size does not equal the memory size.

Memory components are defined as being able to accept operand packing and sub
memory width reads (but not necessarily sub memory width writes). Therefore when the
bit is set, the MPC will construct the requested transaction from one or more memory
accesses.

The Sub Memory Write bit, when set, informs the MPC if the external memory is
capable of receiving sub-memory width writes.

A sub memory width write is defined as a write access where the operand is smaller than
the word width of the memory. For example, an 8 or 16 bit write to a 32 bit wide memory
is a sub memory width write.

The following table (Table 7-6) shows the action for each of the combinations of Data
Size, Memory Or Peripheral , and Sub Memory Write .

Table 7-6: Configuration Register Bit Actions

Sub
Memory

Write

Memory
Or

Peripheral

Data Size
bit 1

Data Size
bit 0

Comments

X 0 0 0 8 bit peripheral

X 0 0 1 16 bit peripheral

X 0 1 0 32 bit peripheral

X 0 1 1 Illegal (reserved for future use)

X 1 0 0 8 bit memory

0 1 0 1 16 bit memory with no 8 bit writes

1 1 0 1 16 bit memory with 8 bit writes

0 1 1 X 32 bit memory with no 8 or 16 bit writes

1 1 1 0 32 bit memory with 8 and 16 bit writes

1 1 1 1 32 bit memory with 16 bit writes

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

The Read Only bit, when set, is used to inform the MPC that only read accesses can be
performed to this external component. If the bus tries to write to this external component,
then the MPC will cause a data abort.
Butterfly Microcontroller Handbook 7-17

The Auto Wait bit, when set, informs the MPC state machine that the current access has
its wait states controlled by the internal wait state generator. When this bit is clear the
wait states are controlled by the external signal Swait .

External Wait State generation

If external wait state control is required, the MPC inserts a default single wait state into
the system. This is to allow the external memory system sufficient time to generate the
Swait signal, which has to be returned before start of the next clock cycle. Therefore it is
not possible to perform single cycle memory access when the auto wait bit is cleared.

The four Wait State bits define the length of time required to perform a memory access
to the selected memory area.

The four Stop Wait bits are used by the MPC to hold off the next bus access. This is to
allow slow peripherals time to get off the external bus before the start of the next external
access. Stop Waits are therefore only applied on read accesses. These register bits
must be loaded with zero if the Auto Wait bit is reset.

Wait States and Stop Waits are in ‘n’ multiples of system clock (Sclk), where ‘n’ is the
value programmed into the register bit field (0-15).

MPC Configuration Register Reset Conditions

At power up, or after the nSreset signal has been asserted, the MPC registers reset into
the following state:

Figure 7-12: Configuration Register Reset State

The reset state is designed as a “lowest common denominator”, the slowest, smallest,
read only memory that can be configured. One of the first operations for a processor is to
set-up the each MPC Configuration Register to the correct value.

 Memory
 or
Peripheral

Sub
Memory

Write

Read
Only

Reserved

 (18 bits)

Stop Waits

(4 bits)

Wait States

(4 bits)

Auto
wait

Data Size

31 28 27 24 23 6 5 4 3 2 1 0

(2 bits)

1111 1111 0..0 1 1 0 1 00

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

There is one exception, the Configuration Register for memory area one. This resets to
the above state except for its Data Size bits. These reset to the values on the MPC input
signals Sr_size[1:0] . Memory area one starts at address 0000 0000, which is where the
7-18 Butterfly Microcontroller Handbook

processor starts executing code from after reset. Therefore the Sr_size bits are used to
indicate the width of the boot code memory to the MPC, allowing it to be set to something
other than 8 bits wide if required. Once the processor has started up, it can then reset
the speed of the memory as required.

7.5 External Interfaces

The following lists the external pins used for the MPC on Butterfly:

Signal [width] Direction Sense Description

Sadd [21:0] Output - Address Bus - 22 bits

nScs [3:0] Output Active low Memory area chip select

nSwe [3:0] Output Active low Byte Write Enable

nSoe Output Active low Output Enable

Swait Input Active high Wait State Request

Sdata [31:0] Input/Output - Data Bus - 32 bits

Sr_size [1:0] Input [00]= 8 bits
[01]=16 bits
[1X]=32 bits

Boot ROM memory size configuration bits

Sbigendian Input Active high BIG/LITTLE Endian Support
BIG = 1, LITTLE = 0

Table 7-7: External Pin-Out Description

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

7.6 Application Information: Designing a Memory System

7.6.1 Example system configuration
Butterfly Microcontroller Handbook 7-19

An example memory system configuration is shown in Figure 7-13 . This shows a system
that contains 8 bit wide EPROM in memory area 1. This is where the boot code for the
microcontroller will reside. Note that the Sr_size[1:0] bits have both been tied to ground,
to indicate that area 1 will contain 8 bit wide memory. Area 2 contains 32 bit wide fast
SRAM, made up of four 8 bit wide devices. This will allow writes to individual bytes. Area
3 contains a 16 bit peripheral, and in this example memory area 4 is unused.

The system shown in Figure 7-13 is little endian. A big endian version of the same
system is shown in Figure 7-14 . The only differences between the two are in how the
Sbigendian pin is tied off, and in how the write enable signals (nSwe[3:0]) are
connected.

In the big endian version, the write enables to the 32 bit SRAM are connected the
opposite way round, i.e. nSwe[0] is connected to the byte at Sdata[31:24] , nSwe[1] is
connected to the byte at Sdata[23:16] , nSwe[2] is connected to the byte at Sdata[15:8] ,
and nSwe[0] is connected to the byte at Sdata[7:0] .

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

Sdata[7:0]
data

Memory Area 1:
8 bit slow ROM
7-20 Butterfly Microcontroller Handbook

Figure 7-13: Example Little-Endian System Configuration

M
P

C
In

te
rf

ac
e

Sr_size[0]

Sdata[15:8]

Sdata[23:16]

Sdata[31:24]

Sadd[15:0]

nScs[0]

nSoe

Sadd[17:2]

Sadd[17:2]

Sadd[17:2]

gnd

nSoe

nSoe

nSoe

nSoe

Sdata[31:0]

Sadd[21:0]

nScs[1]

nScs[1]

nScs[1]

nScs[3:0]

Sbigendian

64K Byte
(EP)ROM

addr

ce

oe

64K Byte
SRAM

data

addr

64K Byte
SRAM

data

addr

64K Byte
SRAM

data

addr

64K Byte
SRAM

data

addr

Sdata[7:0]

Sadd[17:2]

nScs[1]
nSoe

nSwe[1]

nSwe[0]

nSwe[2]

nSwe[3]

nSwe[3:0]

Sdata[15:0]

Sadd[2:1]

nSoe
nScs[2] 16 bit wide

Peripheral

data

addr
ce
oe
we

nSwe[0]

Sr_size[1]

B
ut

te
rfl

y
m

ic
ro

co
nt

ro
lle

r

Memory Area 2:

Memory Area 3:

32 bit fast SRAM

16 bit Peripheral

ce
oe
we

ce
oe
we

ce
oe
we

ce
oe
we

(LSB)

(MSB)

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

Sdata[7:0]

Memory Area 1:
8 bit slow ROM

data
Butterfly Microcontroller Handbook 7-21

Figure 7-14: Example Big-Endian System Configuration

M
P

C
In

te
rf

ac
e

Sr_size[0]

Sdata[15:8]

Sdata[23:16]

Sdata[31:24]

Sadd[15:0]

nScs[0]

nSoe

Sadd[17:2]

Sadd[17:2]

Sadd[17:2]

gnd

nSoe

nSoe

nSoe

nSoe

Sdata[31:0]

Sadd[21:0]

nScs[1]

nScs[1]

nScs[1]

nScs[3:0]

Sbigendian

Sdata[7:0]

Sadd[17:2]

nScs[1]
nSoe

nSwe[2]

nSwe[3]

nSwe[1]

nSwe[0]

nSwe[3:0]

Sdata[15:0]

Sadd[2:1]

nSoe
nScs[2]

nSwe[0]

Sr_size[1]

B
ut

te
rfl

y
m

ic
ro

co
nt

ro
lle

r

Vdd

47KΩ

Memory Area 2:

Memory Area 3:

32 bit fast SRAM

16 bit Peripheral

64K Byte
(EP)ROM

addr

ce

oe

64K Byte
SRAM

data

addr
ce
oe
we

64K Byte
SRAM

data

addr
ce
oe
we

64K Byte
SRAM

data

addr
ce
oe
we

64K Byte
SRAM

data

addr
ce
oe
we

16 bit wide
Peripheral

data

addr
ce
oe
we

(LSB)

(MSB)

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

7.6.2 MPC Configuration Register Settings

A typical EPROM to use in the example might be a 27C512, with 100ns access time. At
an operating speed of 25MHz (40 ns period), it would require 2 wait states to access this
7-22 Butterfly Microcontroller Handbook

device. Similarly, the EPROM has a slow turn off time (typically 40 ns), therefore one stop
state is required to prevent contention on the external data bus.

The auto wait bit must to be set, to enable automatic wait state generation. The memory
is read only, so the read only bit can also be set. The sub memory write bit is
redundant, since it is a ROM, and the memory or peripheral bit should be set to
indicate memory. Finally the data width is 8 bits, so the data size bits should both be
cleared.

In memory area 2, the SRAM to be used is fast enough to be used at zero wait state,
zero stop state. Therefore both of these fields should be set to zero. Again the automatic
wait state generator is being used, so auto wait is set. The memory is capable of
accepting writes, therefore the read only bit should be cleared. The SRAM is capable of
accepting both 8 and 16 bit writes, so the sub memory write bit is set, along with the
memory or peripheral bit. Finally the size is 32 bits, so data size is set to 1,0.

Memory area 3 contains a 16 bit peripheral. In this example the peripheral has a 200 ns
access time, therefore 5 wait states will be required. SInce the turn off time of its data
drivers is 50 ns, two stop states are required to prevent bus contention.

The automatic wait state generator is being used, so auto wait is set. The peripheral is
capable of accepting writes, therefore the read only bit should be cleared. Since
peripherals cannot accept wrong-sized accesses, the sub memory write bit should also
be cleared, along with the memory or peripheral bit. Finally the size is 16 bits, so data
size is set to 0,1.

The MPC Configuration Register settings are shown in Figure 7-15 .

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

 MemorySubReadReservedStop WaitsWait States Auto Data Size
Butterfly Microcontroller Handbook 7-23

Figure 7-15: Example MPC Configuration Register Settings

7.6.3 Calculating Required Memory Timing Parameters

The timings provided with the MPC describe the characteristics of the Butterfly chip, but
do not describe how to calculate what speed of RAM can be used in a Butterfly system.
For example, it is not obvious what speed of SRAM is required to run single-cycle
accesses. This section explains how to calculate the common timing parameters for a
memory sub-system.

The diagram in Figure 7-16 shows a write transaction followed by a read transaction. The
normal MPC timing parameters are shown in grey. The timing parameters required by a
standard SRAM are shown in black. A description of the timing parameters for the MPC
can be found in Table 7-8, whilst Table 7-9 contains a description of some typical SRAM
timing parameters/constraints.

 or

Peripheral

Memory
Write

Only
 (18 bits)(4 bits)(4 bits)

wait
(2 bits)

0010 0001 0..0 1 1 0 1 0

 Memory
 or
Peripheral

Sub
Memory

Write

Read
Only

Reserved

 (18 bits)

Stop Waits

(4 bits)

Wait States

(4 bits)

Auto
wait

Data Size

(2 bits)

0000 0000 0..0 1 0 1 1

 Memory
 or
Peripheral

Sub
Memory

Write

Read
Only

Reserved

 (18 bits)

Stop Waits

(4 bits)

Wait States

(4 bits)

Auto
wait

Data Size

31 28 27 24 23 6 5 4 3 2

(2 bits)

0101 0010 0..0 1 0 0 0

Memory Area 1 configuration: 8 bit slow EPROM

Memory Area 2 configuration: 32 bit fast SRAM

Memory Area 3 configuration: 16 bit peripheral

0

01

01

01

31 28 27 24 23 6 5 4 3 2 01

31 28 27 24 23 6 5 4 3 2 01

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

Write Cycle Read Cycle
Sclk
7-24 Butterfly Microcontroller Handbook

Figure 7-16: Interfacing the MPC to SRAM

In order to calculate what speed of memory is required, there are connecting formulae
that can be used to check that the timing requirements are all met. These are given in
Table 7-9. For example, to calculate the address access time required on a read cycle
the formula is given as Taa <= n x (Tclk) - (Taddr + Tdisu). This says that the memory
access time, Taa, must be less than or equal to the number of clock periods, less the
MPC address output delay, less the required input setup time on the MPC.

Throughout the equations the parameter Tclk represents the clock period to be used in
the application, and the parameter n represents the number of clock cycles to be taken
for each memory access in the memory area under consideration. This is one more than
the number of wait states, as programmed into the Configuration Register (i.e. a one
wait state access takes two clock cycles).

Twc

Taw
Tah

Trc

Tsce

Tasu
Tpwe

Tdh

Tdisu
Tdih

Taddr

Taddrh
Taddr

Taddr

Tncs
Tncsh

Tncs
Tncs

Tnwe
Tnweh

Tnoe
Tnoe

Tnoeh
Tnoe

Tnoeh

Tdo Tdoh
Tdz

Thzoe
Thzce

Tlzoe
Taa
Tace
Tdoe Toha

Saddr

nScs

nSwe

nSoe

Sdata

Sdata

 (write)

(read)

Tmpc
Tmem

 MPC timing parameters
Memory timing parameters

Tdsu

Taddrh

Tncsh

KEY:

Issue 2.0 Chapter 7 - Memory/Peripheral Controller (MPC)

Name Type Description

Tclk - System clock period in application (Sclk)
Butterfly Microcontroller Handbook 7-25

Taddr delay Sclk falling to address (Sadd) valid

Taddrh delay address hold from Sclk falling

Tncs delay Sclk falling to chip select (nScs) valid

Tncsh delay chip select hold from Sclk falling

Tnoe delay Sclk falling to output enable (nSoe) valid

Tnoeh delay output enable hold from Sclk falling

Tnwe delay Sclk falling to write enable (nSwe) valid

Tnweh delay chip select hold from Sclk falling

Tdz delay data output turn off time

Tdo delay Sclk rising to data output valid

Tdoh delay Data output hold from Sclk falling

Tdisu constraint required data input setup time

Tdih constraint required data input hold time

Table 7-8: MPC Timing Parameters

Chapter 7 - Memory/Peripheral Controller (MPC) Issue 2.0

Name Type Description and Formula

Twc constraint Write cycle time
7-26 Butterfly Microcontroller Handbook

FORMULA: Twc <= n x (Tclk) - (Taddr - Taddrh)

Tsce constraint CE low to write end
FORMULA: Tsce <= n x (Tclk) - (Tncs - Tnweh)

Taw constraint Address set-up to write end
FORMULA: Taw <= n x (Tclk) - (Taddr - Tnweh)

Tah constraint Address hold from write enable
FORMULA: Tah <= Taddrh - Tnweh

Tasu constraint Address setup to write start
FORMULA: Tasu <= Tclk/2 - (Taddr - Tnwe)

Tpwe constraint Write enable pulse width
FORMULA: Tpwe <= n x (Tclk) - (Tclk/2 + Tnwe -Tnweh)

Tdsu constraint Data input setup to write enable
FORMULA: Tdsu <= n x (Tclk) - (Tclk/2 + Tdo - Tnweh)

Tdh constraint Data input hold from write enable
FORMULA: Tdh <= Tdoh - Tnweh

Trc constraint Read cycle time
FORMULA: Trc <= n x (Tclk) - (Taddr - Taddrh)

Taa delay Address access time to data valid
FORMULA: Taa <= n x (Tclk) - (Taddr +Tdisu)

Toha delay Data hold after address change
FORMULA: Toha >= Tdih - Taddrh

Tace delay CE low to data valid
FORMULA: Tace <= n x (Tclk) - (Tncs + Tdisu)

Tdoe delay OE low to data valid
FORMULA: Tdoe <= n x (Tclk) - (Tnoe + Tdisu)

Tlzoe delay Output enable to data drive
FORMULA: Tlzoe >= Tdz - Tnoe

Thzoe delay Data output turn off from output enable
FORMULA: Thzoe <= Tclk/2 - (Tnoeh - Tdo)

Thzce delay Data output turn off from chip enable
FORMULA: Thzce <= Tclk/2 - (Tncsh - Tdo)

Table 7-9: Typical SRAM Parameters (with formulae)

Chapter 8 -
Butterfly Microcontroller Handbook 8-1

Chapter 9 -

Chapter 10 -

Chapter 11 -

Chapter 12 -

Chapter 13 -

Chapter 14 -

Chapter 15 -

Chapter 16 -

Chapter 17 -

Chapter 18 -

Chapter 19 -

Chapter 20 -

Chapter 21 -

Chapter 22 -

Chapter 23 -

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Chapter 24 -
24-2 Butterfly Microcontroller Handbook

Chapter 25 -

Chapter 26 -

Chapter 27 -

Chapter 28 -

Chapter 29 -

Chapter 30 -

Chapter 31 -

Chapter 32 -

Chapter 33 -

Chapter 34 -

Chapter 35 -

Chapter 36 -

Chapter 37 -

Chapter 38 -

Chapter 39 -

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

Chapter 40 -
Butterfly Microcontroller Handbook 40-3

Chapter 41 -

Chapter 42 -

Chapter 43 -

Chapter 44 -

Chapter 45 -

Chapter 46 -

Chapter 47 -

Chapter 48 -

Chapter 49 -

Chapter 50 -

Chapter 51 -

Chapter 52 -

Chapter 53 -

Chapter 54 -

Chapter 55 -

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Chapter 56 -
56-4 Butterfly Microcontroller Handbook

Chapter 57 -

Chapter 58 -

Chapter 59 -

Chapter 60 -

Chapter 61 -

Chapter 62 -

Chapter 63 -

Chapter 64 -

Chapter 65 -

Chapter 66 -

Chapter 67 -

Chapter 68 -

Chapter 69 -

Chapter 70 -

Chapter 71 -

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

Chapter 72 -
Butterfly Microcontroller Handbook 72-5

Chapter 73 -

Chapter 74 -

Chapter 75 -

Chapter 76 -

Chapter 77 -

Chapter 78 -

Chapter 79 -

Chapter 80 -

Chapter 81 -

Chapter 82 -

Chapter 83 -

Chapter 84 -

Chapter 85 -

Chapter 86 -

Chapter 87 -

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Chapter 88 -
88-6 Butterfly Microcontroller Handbook

Chapter 89 -

Chapter 90 -

Chapter 91 -

Chapter 92 -

Chapter 93 -

Chapter 94 -

Chapter 95 -

Chapter 96 -

Chapter 97 -

Chapter 98 -

Chapter 99 -

Chapter 100 -

Chapter 101 -

Chapter 102 -

Chapter 103 -

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

Chapter 104 -
Butterfly Microcontroller Handbook 104-7

Chapter 105 -

Chapter 106 -

Chapter 107 -

Chapter 108 -

Chapter 109 -

Chapter 110 -

Chapter 111 -

Chapter 112 -

Chapter 113 -

Chapter 114 -

Chapter 115 -

Chapter 116 -

Chapter 117 -

Chapter 118 -

Chapter 119 -

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Chapter 120 -
120-8 Butterfly Microcontroller Handbook

Chapter 121 -

Chapter 122 -

Chapter 123 -

Chapter 124 -

Chapter 125 -

Chapter 126 -

Chapter 127 -

Chapter 128 -

Chapter 129 -

Chapter 130 -

Chapter 131 -

Chapter 132 -

Chapter 133 -

Chapter 134 -

Chapter 135 - Universal Asynchronous Receiver/

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

Transmitter (UART)
Butterfly Microcontroller Handbook 135-9

135.1 Overview

The Universal Asynchronous Receiver Transmitter (UART) is a component that provides
industry-standard levels of support for full-duplex asynchronous serial communications,
with appropriate mechanisms for both software and hardware flow control. Standard
modem handshake signals are incorporated to facilitate communications via
intermediate devices in the communications channel.

Design Features

• Full duplex operation, independent transmit and receive channels

• 7 or 8-bit serial data length

• 1 or 2 stop bits

• Even, odd or no parity generation

• Internal selectable baud rate generator, derived from system clock

• Double buffered transmit and receive channels

• Software polling to determine channel status

• Optional interrupt generation on transmit channel becoming empty

• Optional interrupt generation on receive channel becoming full

• Detection of parity, overrun, and framing errors on receive channel, with optional interrupt
generation

• Support for modem signals RTS, CTS and DCD with edge detection and optional
interrupt generation

• Maximum transmission rates corresponding to 1/16th of the system clock*

• Power saving through automatic clock suspension of the transmit and receive channel
circuits when both are disabled

• Clock suspended to modem control section when modem signals are disabled

• Digital input filter to improve noise immunity

Note: * This corresponds to the line rate and NOT the Data bandwidth which will be
typically a maximum of 80% of this speed (i.e.: including Start and Stop bits).

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

 nUcts
nUrts REGISTER SET
135-10 Butterfly Microcontroller Handbook

Signal Description

Utxd Data out Serial transmit data
Idles high when no data is being transmitted

Urxd Data in Serial receive data
Expects input signal to idle high when no data is being transferred

nUcts Input,
active low

Clear To Send
When asserted, indicates that the modem or data set is ready to
exchange data; the Modem Status Register monitors actual level and
level changes. Optionally used as hardware handshake signal on
either the transmit or receive channel

nUrts Output,
active low

Ready To Send
When asserted, indicates that the UART is ready to exchange data.
Optionally used as hardware handshake signal on either transmit or
receive channel; set from Modem Control Register

Ueclk /
nUdcd

Input,
active low
(nUdcd)

External Clock / Data Carrier Detect Input
Selectable input - programmed in the System Configuration Register
(section 1.3.4). When Ueclk, external source for baud rate generator.
When nUdcd, indicates that the communications carrier is present.

Table 135-1: Interface Description

Figure 135-1: Block Diagram

Utxd

Urxd

Ueclk

Internal Interface

 nUdcd

Serial Control Register (CR)

Serial Mode Register (MR)

Baud Rate Register (BRR)

Serial Status Register (SR)

Transmit Register (TR)

Receive Register (RR)

Modem Control Register (MCR)

Modem Status Register (MSR)

Receive Shift Register

Transmit Shift Register

Transmit State Machine

Receive State Machine

Baud Rate Generator

Modem Control Block

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

135.2 Operational Description

For register details, see Section 135.3 Programmer’s Model
Butterfly Microcontroller Handbook 135-11

135.2.1 Baud Rate Generation

The UART transmit and receive channels are clocked from a single, internally derived
clock (internal clock), whose period is determined by the reference clock, and the value
programmed into the baud rate register. The reference clock is selected, using Clock
Select (CR[2]) , from one of two sources:

• the external clock input Ueclk , or

• an internal prescaler driven by the system clock, Sclk

In the latter case, clock prescaler, 16 bits long, is configured to generate a reference
clock of period ‘Sclk divided by 1,2,4,... up to 32768’, as specified by the value
programmed into Division Select (MR[7:4]) .

The Baud Rate Register is used to divide the reference clock period within the range 1
(BRR = 0) to 256 (BRR = 255) to allow approximation to the desired baud rate. The
required baud rate register value may be calculated according to the following formula:

BRR = ((Reference Clock) / (16 x Baud Rate)) - 1

The clock is not applied to the transmit or receive channels if neither channel is enabled
or currently active. Similarly, the system clock is not applied to the modem control section
when the modem enable bit of the control register is reset.

Clock Prescaler

Clock Generator

Sclk

Clock Division

Ueclk
Clock_select

C
lock S

elect

Baud Rate Counter

Comparator

Baud Rate Register

Internal clock

Reference Clock

Figure 135-2: The Clock Chain

x 16 bits

x 8 bits

(16x Baud rate)

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

135.2.2 Transmit Channel

The Transmit channel is clocked by the internal clock referenced in Figure 135-2. At
reset, the Transmit Shift Register and the Transmit Register are empty, Transmit
135-12 Butterfly Microcontroller Handbook

Register Empty (SR[1]) is set, and the channel is in Idle state. If Transmit Interrupt
Enable (CR[5]) is subsequently set, a transmit interrupt request is generated.

The following set of conditions must be satisfied for data transmission to take place:

• Transmit Enable (CR[1]) must be set.

• The Transmit Register Empty (SR[1]) must be clear. This occurs when a byte of data is
written to the Transmit Register .

If the above conditions are met, then the following sequence of operations occurs:

• The contents of the Transmit Register are transferred into the Transmit Shift Register, a
start bit is output from the Transmit Data port, and Transmit Register Empty (SR[1]) is
set, disabling new transfers until fresh data is provided. If Transmit Interrupt Enable
(CR[5]) is set, then an interrupt is generated. Transmit Active (SR[3]) is also set to
indicate that a transfer is taking place.

• The contents of the Transmit Shift Register are then shifted out from the Transmit Data
port, low order bit first, at one 16th of the internal clock rate. The value of Character
Length (MR[0]) dictates the number of transmit bits per character; if set, 7 bits are
transmitted, whilst if clear, 8 bits are transmitted.

• If Parity Enable (MR[1]) is set, then a parity bit is inserted into the serial data stream. If
Parity Sense (MR[2]) is set, then Odd Parity is generated; if clear, then Even Parity is
generated.

• The number of Stop bits inserted into the data stream is indicated by Stop Count
(MR[3]) . If the bit is clear then 1 Stop bit is inserted; if set then 2 Stop bits are inserted.

Upon completion of the transfer, the transmission condition described above is re-
evaluated. If the evaluation is true, then the next character will be transmitted; otherwise
the channel returns to the idle state, and Transmit Active (SR[3]) is cleared.

Idle Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Parity Stop1 Stop2 Idle

Internal Clock/16

Transmit Enable

Transmit Data

Figure 135-3: Serial Transmission Example

(data = 01010101, even parity, 2 stop bits)

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

135.2.3 Receive Channel

Data transmission from the Transmit Channel is illustrated in Figure 135-3. The receive
channel is clocked at 16x the desired channel baud rate. At reset, the receive shift
Butterfly Microcontroller Handbook 135-13

register and the Receive Register are both empty, Receive Register Full (SR[0]) is
clear, and the receive channel is disabled. The channel may be enabled by setting
Receive Enable (CR[0]) . The channel idles until the following conditions are met:

• Receive Overrun Error (SR[6]) and Receive Framing Error (SR[5]) are clear,
indicating the receive channel is free to receive new data,

• A transition from high to low is detected on the filtered receive data (Urxd) input, which
signals the leading edge of a Start bit.

The detection of the leading edge of a Start bit causes the following actions:

• The receive channel translates into the start state, resetting the x16 clock count to zero,
and indicating that a Start bit has been detected by setting Receive Active (SR[2]) .

• On the eighth clock cycle, the channel resamples for the Start bit, in order to reject
spurious transitions. If the Start bit is not present, the channel returns to an idle state.

• Each subsequent 16 clocks, the receiver samples the filtered receive data input, and
shifts the sampled bit into the receive shift register, lowest significant bit first, until the
number of bits indicated by Character Length (MR[0]) have been assembled. If the
character length is 7 bits, then the most significant bit is set to zero.

• The parity of the incoming data is calculated cumulatively with each bit. If Parity Enable
(MR[1]) is set, the result is compared with the sampled incoming Parity bit. If Parity
Sense (MR[2]) is clear, then even parity is expected; if set, then odd parity is expected. If
a parity check error is detected, Parity Error (SR[4]) is set.

• The incoming data stream is sampled for the correct number of stop bits, as indicated by
the value of Stop Count (MR[3]) - if an expected Stop bit is absent, the Framing Error
(SR[5]) flag is set.

• Receive Register Full (SR[0]) is then checked to determine the status of the receive
buffer. If clear, the received data is transferred from the receive shift register to the
Receive Register , Receive Register Full (SR[0]) is set, and sampling for a new
character begins; If set, Overrun Error (SR[6]) is set, and the incoming data discarded.
The receive channel should then disabled by writing a zero into the Receive Enable
(CR[0]) to avoid further sampling for a new start bit.

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

135.2.4 Receive Data Filter

To reduce the susceptibility of the UART receive channel to extraneous noise, the input
signal is passed through a low-pass digital filter to smooth the received serial data
135-14 Butterfly Microcontroller Handbook

stream. The digital filter is implemented as a 3-bit up/down counter, with no roll-over or
roll-under, which is clocked at 16x the desired baud rate. The unfiltered serial input is
applied to the up/down control of the counter, whilst the filtered serial output is taken from
the most significant bit of the counter. The filter introduces a four clock (pi/4) phase delay
between input and output signals, but can reject up to four incorrect samples per
received bit. The function of the filter is illustrated below:

7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 7 7 7

START BIT 0

77

Sample Clock

Receive Data

Counter

Output Data

Sample Point

Figure 135-4: Receive data filter action

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

135.2.5 Data Transfer Methods

A variety of methods are available to move data to and from the UART - the selection of
which is dictated by the nature of the transfer in terms of real time constraints, and the
Butterfly Microcontroller Handbook 135-15

software or hardware overhead to support it. When the Receive Register is full, or the
Transmit Register is empty, the condition is indicated by associated status flags -
Receive Register Full (SR[0]) and Transmit Register Empty (SR[1]) respectively. The
implications of each and their derived signals are described below:

Software Polled I/O

The simplest and quickest mechanism available, in which the processor constantly polls
the UART Status Register to determine whether there is data to be transferred from the
UART upon reception (as indicated by Receive Register Full (SR[0]) = 1) or whether
data can be transferred to the UART for transmission (indicated by Transmit Register
Empty (SR[1]) = 1). Receive Interrupt Enable (CR[4]) and Transmit Interrupt Enable
(CR[5]) should be disabled. This technique is dependent on the data rate not exceeding
the worst case polling repetition rate, in which case data may be lost. Alternatively, if the
data rate is significantly slower than the polling repetition rate, then unnecessary and
hence inefficient polling will result.

Interrupt driven I/O

In this instance, the processor is interrupted from executing its current task to service a
transfer request from the UART. Receive Interrupt Enable (CR[4]) and/or Transmit
Interrupt Enable (CR[5]) should be enabled, as appropriate. When either Receive
Register Full (SR[0]) or Transmit Register Empty (SR[1]) is set, a corresponding
Receive Interrupt or Transmit Interrupt is generated, which is processed by the Interrupt
Controller before being applied to the processor. Reading the Receive Register or
writing to the Transmit Register will clear the corresponding status flag, and hence
negate the interrupt. Using interrupt driven I/O assures prompt service of the UART
channel, but there is some associated latency and software overhead.

Direct Memory Access

Since the interrupt generating condition may be removed by either reading the Receive
Register or writing to the Transmit Register as appropriate, the interrupt service routine
may be replaced by an operation which mimics the function of the interrupt service
routine and transfers data between a memory buffer and the UART, and vice-versa; the
internal DMA controller is capable of this function. Receive Interrupt Enable (CR[4]) or
Transmit Interrupt Enable (CR[5]) should be enabled, as appropriate. When either

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Receive Register Full (SR[0]) or Transmit Register Empty (SR[1]) is set, a
corresponding Receive Interrupt or Transmit Interrupt is generated. These interrupts
should be disabled in the Interrupt Controller if DMA is to be used, and the appropriate
135-16 Butterfly Microcontroller Handbook

interrupt should be selected as a DMA trigger (see Table 1-6 on page 11).

For reception of data, the DMA source channel must be programmed with the UART
Receive register address (as a static address), and the DMA destination channel
address should be set to the appropriate static or incrementing-address destination. See
Chapter 10 - DMA Controller (DMAC) for detailed information about other set-up
requirements.

With the DMA controller suitably programmed and enabled (using the software enable
mechanism) data received by the UART will trigger the DMAC automatically. The DMAC
will request the Bµild bus, and upon the bus being granted, will transfer the UART data to
the required destination. This mechanism incurs no on-going software overhead or CPU
activity and is highly efficient. Transmission of data can be handled in a similar manner.

135.2.6 Manual Flow Control

If Flow Control (CR[3]) is reset, then automatic flow control is disabled, and flow control
must be performed in software. Either an in-channel signalling protocol (such as XON/
XOFF) must be used, or the nUcts and nUdcd signals must be monitored by software
polling or interrupts.

The Ready To Send (nUrts) signal may be changed under processor control by writing to
Ready To Send (MCR[0]) . If Modem Status Enable (MCR[2]) is set, then the Modem
Status Register is updated with the Status and Change indication for each modem input
signal. Clear To Send Status (MSR[0]) and Clear To Send Change (MSR[4]) are
updated from nUcts , while Data Carrier Detect Status (MSR[2]) and Data Carrier
Detect Change (MSR[6]) are updated from nUdcd .

Changes in nUcts or nUdcd will also cause Modem Signal Change (SR[7]) to be set. If
the Modem Interrupt Enable (CR[7]) is set, then an interrupt will be generated. Reading
the Modem Status Register automatically clears Clear To Send Change (MSR[4]) and
Data Carrier Detect Change (MSR[5]) . It also clears Modem Signal Change (SR[7]) ,
and consequently the interrupt.

135.2.7 Automatic Flow Control

If Flow Control (CR[3]) is set , then automatic flow control is established using the modem
control signals.

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

The value of Ready To Send (MCR[0]) is ignored. If Modem Status Enable (MCR[2]) is
set, then the Modem Status Register is updated with the Status and Change indication
for each modem input signal. Clear To Send Status (MSR[0]) and Clear To Send
Butterfly Microcontroller Handbook 135-17

Change (MSR[4]) are updated from nUcts , while Data Carrier Detect Status (MSR[2])
and Data Carrier Detect Change (MSR[6]) are updated from nUdcd , as above.

Changes in nUcts or nUdcd will NOT cause Modem Signal Change (SR[7]) to be set.
Thus a modem interrupt will not be generated when automatic flow control is in use.

The UART supports two channel configurations - modem configuration and null-modem
configuration. The function of nUrts , nUcts and nUdcd differs between configurations as
identified below.

135.2.8 Modem Flow Control

If (MCR[3]) is reset, then the modem configuration is selected. A modem converts digital
signals into an appropriate format for transmission over a communications channel.
Since the communications channel usually has reduced bandwidth compared to the
UART, it is necessary to perform flow control to reduce the UART data rate to that which
can be sustained by the channel.

When data is written to the Transmit Register, nUrts is asserted to indicate that there is
data for transmission. It reflects the inverted state of Transmit Register Empty (SR[1]) .
If the nUcts input is asserted then the Transmit Channel is enabled, and data
transmission takes place until the Transmit Register is empty, or nUcts is negated.
nUdcd is used to indicate to the Receive Channel that there is a data carrier present,
implying valid data is present which may be sampled by the Receive Channel.

UART MODEM

nUrts

Utxd

nUcts

nUrxd

nUdcd
Receive
Channel

Transmit
Channel

Transmit
Channel

Receive
Channel

RTS

TXD

CTS

RXD

DCD

Figure 135-5: Configuration 0 - Modem Flow Control

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

135.2.9 Null Modem Flow Control

If Configuration (MCR[3]) is set , then the null-modem configuration is selected. In the
case of null-modem flow control, the bandwidth of data transfer is limited by the ability of
135-18 Butterfly Microcontroller Handbook

the receiving device to accept new data or by the line characteristics:

The Receive Channel indicates that it is ready to receive new data by asserting the
Ready To Send (nUrts) output, which is the inverse of Receive Buffer Full (SR[0]) . If
the nUcts input is negated, then the Transmit Channel remains Idle, and no data
transmission takes place.

Butterfly Remote

nUrts

nUtxd

nUcts

nRtxd

CTS

TXD

RXD

RTS
Transmit
Channel

Receive
Channel

Transmit
Channel

Receive
Channel

Figure 135-6: Configuration 1 - Null modem Flow Control

UART UART

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

135.3 Programmer’s Model

Addresses are specified as offsets from the base address as defined for the system. All
accesses must be 8-bit. Attempts of any other access width (e.g.: 32 bit wide) will cause
Butterfly Microcontroller Handbook 135-19

a Data Abort exception.

Address Offset R/W Name Abbreviation

+0x000 RW Serial Control Register CR

+ 0x004 RW Serial Mode Register MR

+ 0x008 RW Serial Baud Rate Register BRR

+ 0x00C R Serial Status Register SR

+ 0x010 RW Transmit/Receive Register TR / RR

+ 0x014 RW Modem Control Register MCR

+ 0x018 - Reserved

+ 0x01C R Modem Status Register MSR

Table 135-2: Program Register View

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

135.3.1 Register Descriptions

Serial Control Register (CR) and Serial Mode Register (MR)
135-20 Butterfly Microcontroller Handbook

The CR defines the current operation of the transmit and receive channels, and the
interaction with the processor via the interrupt signals.

When an external clock is selected, the interface should be run at the desired baud rate
and not at x16 of the rate. Performance characteristics of the external Clock input can be
found in the Butterfly Microcontroller Performance Supplement: SP4578-1.0

Bit Function Value
Reset
Value

7 Modem Interrupt Enable [0] disabled, [1] enabled 0

6 Error Interrupt Enable [0] disabled, [1] enabled 0

5 Transmit Interrupt Enable [0] disabled, [1] enabled 0

4 Receive Interrupt Enable [0] disabled, [1] enabled 0

3 Flow Control [0] software flow control, [1] hard-
ware flow control

0

2 Clock Select [0] Internal, [1] external 0

1 Transmit Enable [0] channel disabled, [1] channel
enabled

0

0 Receive Enable [0] channel disabled, [1] channel
enabled

0

Table 135-3: Serial Control Register (CR) - Read / Write, + 0x000

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

The Serial Mode Register (MR) Defines the mode of operation of the transmit and
receive channels, with the format of the serial bit stream and clock information. Clock
Select is used to choose between the internal clock or an external clock, whilst Division
Butterfly Microcontroller Handbook 135-21

Select determines which of 16 clocks from a division chain should be applied to the
internal clock.

Baud Rate Register (BRR)

Allows generation of baud rates to within a small tolerance (described in Section 135.2.1)
of desired rate.

Bit Function Value
Reset
Value

7-4 Division Select [0000] Divide by 1... [1111] Divide by 32768 0

3 Stop Count [0] 1 stop bit, [1] 2 stop bits 0

2 Parity Sense [0] even, [1] odd 0

1 Parity Enable [0] No parity, [1] Parity enabled 0

0 Character Length [0] 8 bit data, [1] 7 bit data 0

Table 135-4: Serial Mode Register (MR) - Read / Write, + 0x004

Bit Function
Reset
Value

7-0 Scaling factor for internal serial clock:
BRR(0) -> 1, BRR(n) -> n+1, BRR(255) -> 256

0x0

Table 135-5: Baud Rate Register (BRR) - Read / Write, + 0x008

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Serial Status Register (SR)

Reflects the current status of the transmit and receive channels, and receive errors.
Interacts with interrupt enable bits in the serial control register (CR) to generate
135-22 Butterfly Microcontroller Handbook

interrupts on various conditions.

Transmit Register (TR)

This register holds data to be transmitted. Upon the start of a transmit cycle, the contents
are transferred to the transmit shift register and Transmit Register Empty (SR[1]) is set
to indicate that new data may be written, upon which the flag is cleared. The L.S.B is
transmitted first.

Bit Function Value Reset Value

7 Modem signal change [0] no change, [1] change detected 0

6 Overrun Error [0] no error, [1] error detected 0

5 Framing Error [0] no error, [1] error detected 0

4 Parity Error [0] no error, [1] error detected 0

3 Transmit Active [0] idle, [1] active

2 Receive Active [0] idle, [1] active 0

1 Transmit Register Empty [0] full, [1] empty 1

0 Receive Register Full [0] empty, [1] full 0

Table 135-6: Serial Status Register (SR) - Read, + 0x00C

Bit Function

7-0 Data to be transmitted from serial transmit port

Table 135-7: Transmit Register (TR) - Write,+ 0x010

Issue 2.0 Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART)

Receive Register (RR)

A read-only register which holds data received from the serial receive port; when loaded
at the end of a receive cycle, the receiver is disabled and Receive Register Full (SR[0])
Butterfly Microcontroller Handbook 135-23

is set to indicate that there is new data. This flag is cleared when data is read. The M.S.B
will contain the most recently received Bit.

Modem Control Register (MCR)

Defines function of modem control and status signals and their interaction with the
transmit and receive channels for hardware handshake mechanisms.

Bit Function

7-0 Data received from serial receive port

Table 135-8: Receive Register (RR) - Read, + 0x010

Bit Function Value
Reset
Value

7-4 Reserved Write as [0000]; returns [0000] when read 0

3 Configuration - controls nUrts if Flow
Control (CR[3]) is set

[0] Modem configuration
[1] Null-modem configuration

0

2 Modem Status Enable - when
enabled, Modem Status Register
values are updated

[0] disabled, [1] enabled. 0

1 Reserved Write as [0]; returns [0] when read 0

0 Ready To Send (nUrts) - ignored if
Flow Control (CR[3]) is set

[0] clear, [1] set 0

Table 135-9: Modem Control Register (MCR) - Read / Write,+0x 014

Chapter 135 - Universal Asynchronous Receiver/Transmitter (UART) Issue 2.0

Modem Status Register (MSR)

If Modem Status Enable (MCR[2]) is set, then this register reflects the current status
and past changes on the modem control signal inputs. If Modem Interrupt Enable

Bit

7

6

5

4

3

2

1

0

135-24 Butterfly Microcontroller Handbook

(CR[7]) is set, then interrupts are generated on changes of these signals.

Function Value Reset Value

Reserved Returns [0] when read 0

Data Carrier Detect (nUdcd) Change [0] no change, [1] change detected 0

Reserved Returns [0] when read 0

Clear To Send (nUcts) Change [0] no change, [1] change detected 0

Reserved Returns [0] when read 0

Data Carrier Detect (nUdcd) status [1] No carrier, [0] Carrier 0

Reserved Returns [0] when read 0

Clear To Send (nUcts) Status [1] Not Ready, [0]Ready 0

Table 135-10: Modem Status Register - Read, + 0x01C

Chapter 9 - Interrupt Controller (INTC)
GPS Butterfly Microcontroller Handbook 9-1

9.1 Introduction

The ARM processor has two interrupt inputs named FIQ (Fast Interrupt Request) and
IRQ (Interrupt Request). The FIQ channel has a higher priority and a greater number of
dedicated banked registers than the IRQ channel. Both inputs accept asynchronous
transitions which are delayed by one cycle for synchronisation before there is any effect
on processor execution flow. Refer to ARM7 Microprocessor Exceptions for more details
on how the processor handles interrupts.

Many applications require a greater number of interrupt channels than the two provided
by the ARM processor, therefore an Interrupt Controller is required to interface between
multiple interrupt sources and the ARM processor.

9.1.1 Design Features
• Independently controlled interrupt channels

• Hardware priority encoding is provided for FIQ interrupts to indicate the highest priority
active FIQ channel

Each channel provides the following functions, all under software control:

• generation of either a FIQ or IRQ request

• independent masking of the channel interrupt source

• status bits to indicate the state of the channel both before and after masking

• responds to edge triggered or level sensitive sources

• Programmable for active low or active high interrupts

• A FIQ interrupt can be downgraded to an IRQ interrupt

• An IRQ interrupt can be upgraded to a FIQ interrupt

Chapter 9 - Interrupt Controller (INTC) Issue 2.0

9.2 Architecture

interrupt sources
9-2 GPS Butterfly Microcontroller Handbook

Figure 9-1: Interrupt Controller

Note: Interrupt sources can be from internal modules or from external interrupt pins.

interrupt
processinginterface

control

bus interrupt
processing

interrupt
processing

ac
tiv

e
in

te
rr

up
ts

B
µI

LD
 B

us

daisy chain
interrupt to ARM

0 ..141

FIQ
priority
encoder

FIQ
priority
encoder

FIQ
priority
encoder

Issue 2.0 Chapter 9 - Interrupt Controller (INTC)

9.3 Operational Description

9.3.1 Interrupt Controller Structure
GPS Butterfly Microcontroller Handbook 9-3

The interrupt controller consists of identical, independent channels, with each channel
capable of handling one interrupt source. The channel is split into two parts, the interrupt
processor and the FIQ priority encoder. The channels are supported by the bus interface,
which ties all the channels into a common register view. Each channel is represented in
the control/status registers by a single bit. Channel 0 is represented by bit 0, channel 1
by bit 1 and so on.

On Butterfly, 15 interrupt channels are provided. Interrupt Channel allocation is detailed
in Table 1-7 on page 1-12

9.3.2 Interrupt Processor

This is a block which allows the interrupt source to be processed in a number of ways.
Each of these options is controlled by a single bit of a register corresponding to that
particular interrupt channel. The options available are:

• programmable polarity of interrupt source [Polarity Register]

• edge or level sensitivity [Edge/Level Triggered Register]

• enabling/disabling of interrupt [Enable Register]

• reset of edge sensitive inputs (level sensitive inputs must be reset at the source device)
[Reset Edge Triggers]

• programmable type assignment, i.e. FIQ or IRQ interrupt to ARM. [Type Register]

Further read-only registers are provided to read the interrupt status at several points in
the processing chain. This provides significant flexibility for real-time programming
control.

The points at which the signal can be read are:

• at input (the raw interrupt source signal) visible via the Interrupt Sources register

• After polarity selection but before the Enable Register via the Pre-enable Sources
register. (n.b after polarity selection, all signals are active high)

• After the Enable Register via the Post-enable Sources register. n.b. only unmasked
interrupts will be visible at this point

• After type selection - via FIQ Active Sources and IRQ Active Sources registers

All channels are capable of handling asynchronous inputs. The synchronisation is
handled within the ARM processor itself, and there is no restriction on the timing of inputs
to the interrupt controller.

Chapter 9 - Interrupt Controller (INTC) Issue 2.0

9.3.3 FIQ Priority Encoder
This module can be used to shorten FIQ interrupt latency times. If not used, all priority
sorting must be carried out in software. The cost of shortening the FIQ interrupt latency
9-4 GPS Butterfly Microcontroller Handbook

using the priority encoder is that the relative priorities of all FIQ interrupts are fixed, since
the encoder uses a daisy-chain approach. This puts each interrupt channel in a chain
with the highest priority sources at the top (see Table 1-7 on page 12).

The control scheme associated with this is as follows: on receipt of an interrupt, the
processor vectors to the interrupt vector address (also known as the exception vector
address). When the interrupt controller sees this address on the bus, it activates a lock
signal. This latches the state of all the FIQ interrupt lines. An enable signal is propagated
down the chain from highest to lowest priority, ensuring that if a particular channel is
active, all lower priority channels are disabled.

Each channel produces a signal that indicates if the channel is both enabled and active.
When the daisy chain is stable, only one channel will be setting this signal. The signals
are encoded into a five bit number to indicate the highest priority active FIQ channel.

This number can be read from the FIQ Encoded Priority Register (Figure 9-2). It is
placed in bit positions 2 to 6 to allow it to be used directly for indexing into a branch table.
An example code sequence showing how this can be done is found in Section 9.5.

Figure 9-2: FIQ Encoded Priority Register

The lock is released by the act of reading the priority register. This allows new interrupt
requests to propagate through the daisy chain.

9.3.4 Bus Interface Control
The bus interface handles all the register selects and control functions of the interrupt
controller. Seen from the Bµild bus, the interrupt controller is a collection of memory-
mapped 32-bit registers. The address map is given in Table 9-1. The FIQ encoded
priority value can be read from address offset 0x028. The five remaining read-only
registers shown describe the status of each channel.

Offsets 0x02C to 0xFFC are blank, with no registers allocated to this area. The interrupt
controller will cause a bus error if the system attempts to access these locations. It will
also cause a bus error if an attempt is made to write to the read-only registers. The “reset
edge triggers” at offset 0x010 is a transient function, i.e. it resets the edge triggering but
does not hold it reset, leaving it ready to receive further interrupts. The location does not

00x x x x x

highest priority active FIQ channel

000 00

Issue 2.0 Chapter 9 - Interrupt Controller (INTC)

store a value. A bus error occurs if a read is attempted to this location. All bus accesses
to the Interrupt controller are handled in a single cycle.
GPS Butterfly Microcontroller Handbook 9-5

9.3.5 External Interface

External interrupt pins (Iextint1 and Iextint2) are provided that can feed directly into the
interrupt controller. In addition to the dedicated pins. any change on the external pins of
the PPI can be used to initiate an interrupt. See chapter on the Programmable Peripheral
Interface (PPI) for more information.

9.4 Programmer’s Model

A detailed description of the functions and the bit significance is given in Section 9.3

Address Offset Function Type Interpretation
Reset
Value

0x000 Interrupt Sources R

0x004 Polarity Register RW 1 = active Undefined

0x008 Pre-enable Sources R 1 = active Undefined

0x00C Edge/Level triggered RW 1 = edge, 0 = level Undefined

0x010 Reset Edge Triggers W 1 = reset Undefined

0x014 Enable Register RW 1 = enable Undefined

0x018 Post-enable Sources R 1 = active Undefined

0x01C Type Register RW 1 = FIQ, 0 = IRQ Undefined

0x020 FIQ Active Sources R 1 = active Undefined

0x024 IRQ Active Sources R 1 = active Undefined

0x028 FIQ Encoded Priority R active bits 2-6 Undefined

0x02C - 0xFFC Reserved - Undefined

Table 9-1: Register Map

Chapter 9 - Interrupt Controller (INTC) Issue 2.0

9.5 Using the Interrupt Controller

The ARM processor has a simple mechanism for interrupt priority handling. When an
IRQ interrupt is received, it sets a mask bit in the status register (see section 2.3.3 on
9-6 GPS Butterfly Microcontroller Handbook

page 7) to prevent any further IRQ interrupts being serviced. However, the ARM may
service a FIQ interrupt during this time. When n FIQ interrupt is received , it sets mask
bits in the status register to prevent any further IRQ or FIQ interrupts being serviced. On
the Butterfly microcontroller this capability is enhanved further with the addition of an on-
chip Interrupt controller.

In a system with multiple interrupt sources, it is usually required that a higher priority
interrupt will be able to interrupt a lower priority service routine. If both are either FIQ or
IRQ interrupts, then the interrupt service routines must be written as re-entrant code.
The writing of re-entrant code is beyond the scope of this manual, but is fully explained in
the Mitel ARM software toolkit manuals.

Two simple examples are given below, of using the Butterfly interrupt controller in
conjunction with the ARM processor interrupt mechanism. The first is written in assembly
code and uses the FIQ Encoded Priority Register to determine the channel of an FIQ
interrupt, while the second is written in C and uses the IRQ Active Source Register to
determine the interrupting channel and branch to the appropriate service routine.

Example 1

fiq_service LDR R9,[R8,#0x28] ; read the priority register
ADD PC,PC,R9 ; index into branch table
NOP ; take account of pipeline
B fiq_isr0 ; branch table start
B fiq_isr1
B fiq_isr2

|
|

B fiq_isrn

The assembly code example above illustrates the use of the FIQ Encoded Priority
Register and a means of achieving extremely low interrupt latency. To carry out any form
of processing, it would more common to save some of the register values, and restore
them afterwards. This can be implemented within the individual functions that are
invoked, thus allowing a high priority, but simple, function to execute in minimum time.

The fiq_service function may be located at address 0x1C, the FIQ interrupt vector
address, so that a branch instruction to this function (fiq_service) is not required.

In this example, to improve latency. the base address of the interrupt controller has
already been loaded into register 8 of the FIQ banked ARM registers during initialisation.

Issue 2.0 Chapter 9 - Interrupt Controller (INTC)

Example 2

static void __irq irq_service(void)
{

GPS Butterfly Microcontroller Handbook 9-7

unsigned long irq_active;

irq_active = *((unsigned long*)INTBASE + 0x24);
if (irq_active & 0x8) irq_priority_0();
else if (irq_active & 0x80) irq_priority_1();
else if (irq_active & 0x800) irq_priority_2();

|
|

else if (irq_active & 0x40) irq_priority_n();
}

The algorithm above is a very simple reorganisation of the fixed priorities of the
hardware. Further complexity could easily be implemented, however more complexity is
likely to affect interrupt latency.

Another common problem is when one interrupt channel may normally need to be low
priority, but under certain circumstances, may want to promote itself to complete a
specific task. This may be accomplished by the routine writing to the Type Register and
changing the Type of its channel from an IRQ to an FIQ. As there is still an active
interrupt, a FIQ interrupt is immediately generated, thus promoting that task. In the case
of Edge Triggered interrupts, this must be carried out before the edge trigger is reset by
writing to the Reset Edge Triggers location.

It is also possible for a FIQ to downgrade to an IRQ interrupt in a similar way, however,
the IRQ will still be locked out until the FIQ has finished, when it will then be processed in
the normal way.

Chapter 9 - Interrupt Controller (INTC) Issue 2.0
9-8 GPS Butterfly Microcontroller Handbook

Chapter 10 - DMA Controller (DMAC)
Butterfly Microcontroller Handbook 10-1

10.1 Overview

Data transfer between memory blocks, or between memory and a peripheral, can be
extremely cycle intensive for a processor; the ARM processor, for example, requires at
least nine clock cycles to move a word of data from one address in memory to another.
The Butterfly Microcontroller contains a DMA controller, which assists the processor to
move large blocks of data around a system.

The DMA system is initialised by the processor with a source and a destination for the
data transfer. On receipt of a DMA request, the DMA Controller acquires control of the
system address and data buses and proceeds to transfer data until a stop condition is
met. The DMA Controller may then be auto-initialised or manually reprogrammed as
desired.

• Maximum transfer rates of 100 MBytes per second (single addressing), 50 MBytes per
second (dual addressing) at 25 MHz, zero wait-state transactions

• 32 bit (4 GByte) addressing range, address increment, decrement and hold

• Data transfer sizes of 8, 16, and 32 bits (statically sized)

• 16 bit (65536 item) maximum transfer count

• Single addressed (fly-by) transfer performed by individual channels

• Dual addressed (memory-memory and peripheral-peripheral) transfers supported by
linked channel pairs

• Transfers can be triggered by software

• Maskable level or edge sensitive hardware transfer triggers with selectable polarity

• Maskable hardware transfer acknowledge signals with selectable polarity

• Block and Packet mode transfers supported

• Wait state insertion when indicated by slow memory

• Auto-initialisation of channels on completion

• Chained DMA transfers supported for scatter-gather operations

• Selectable interrupt generation on completion

• Fixed channel priority

• Optional bus locking to prevent interruption of DMA services by other bus masters

• Programmable DMA triggers from internal and external sources

• Abort mechanism for illegal access with interrupt generation and transfer halt

Chapter 10 - DMA Controller (DMAC) Issue 2.0

DacknDreqn
10-2 Butterfly Microcontroller Handbook

10.1.1 DMA Controller Trigger Selection

Each channel DMA request (Dreq) may be connected to one of several sources by
programming the appropriate value into the Channel Select bits of the System
Configuration Register, which is described in Chapter 1.

Signal Description

Dreqn Input
Programmable
active high/low

DMA service request for channel n.

Dackn Output
Programmable
active high/low

DMA service acknowledge for channel n - implicitly addresses a
peripheral

Table 10-1: DMA Controller Signals

Figure 10-1: Interface Diagram

Channel Status (CSR)

Packet Size (PSR)

Base Transfer Count (BTR)

Current Transfer Count (CTR)

Base Address (BAR)

Current Address (CAR)

Transfer Count

Address

Packet Count

(R) +C

(W) +C

(R) +8

(W) +8

(RW) +4

(R) +0

Internal Interface

DMA Status (DSR) +200

Channel Control (CCR) (RW) +0

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

10.2 Operational Description

10.2.1 Single Addressed (Fly-by) Transfer
Butterfly Microcontroller Handbook 10-3

DMA transfers are one-to-one transactions, with a data source and destination. High
speed data transfer applications require use of the full bandwidth of the internal data bus,
which corresponds to one data transaction per bus cycle. Since only a single address
may be explicitly associated with the data (and presented on the address bus as either
source or destination), the corresponding address must be implicitly signalled. This is
performed using a hardware handshake protocol, which allows the DMA controller to
directly access the implicitly addressed device.

Each DMA channel is capable of generating an address and a hardware acknowledge
signal for a particular data transaction. Data is presented to the bus by the source and
written to the destination during a single bus transaction; it is not buffered by the DMA
controller. An address is broadcast onto the bus simultaneously. This transfer mode is
referred to as a single addressed or Fly-by transaction, and Transfer Mode (CCR[9])
must be clear. If the address is the source of the transfer, then Transfer Direction
(CCR[8]) should be clear; if the address is the destination, then the bit should be set.

Transfers are usually triggered by hardware transfer requests:

Data

Address

Figure 10-2: Architecture of Single-Addressed DMA

Peripheral Memory

Dreq

Dack

DMA Controller

Chapter 10 - DMA Controller (DMAC) Issue 2.0

Block Transfer

If the target device can process data with the same bandwidth as the bus then the data
may be transferred in consecutive bus cycles; this is referred to as a Block Transfer, and
10-4 Butterfly Microcontroller Handbook

Transfer Type (CCR[10]) must be set. The function of the hardware request signal is
determined by the value of Request Trigger Type (CCR[11]) .

Edge Triggered Block Transfer

If Request Trigger Type (CCR[11]) is clear, the channel becomes edge sensitive, and
monitors for the assertion of the request input. Once triggered, the channel will ignore
subsequent transitions on the hardware request input until channel activity is completed.
The input must be negated before the channel can be retriggered.

Level Triggered Block Transfer

If Request Trigger Type (CCR[11]) is set, then the channel continues to test the
hardware request input throughout a transaction; if the input is negated, the channel
activity is halted on completion of the current bus cycle and the channel returns to the
Idle state. If no other channel is requesting DMA activity, then at least one null bus cycle
will be inserted.

Sclk

Dreq

Sadd

Sdata

Dack

start end

[start] [end]

Figure 10-3: Edge Triggered Block Transfer

Sclk

Dreq

Sadd

Sdata

Dack

n n+1

[n] [n+1]

n+2 n+3 n+4 n+5

[n+2] [n+3] [n+4] [n+5]

Figure 10-4: Level Triggered Block Transfer

null

null

null

null

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

Edge Triggered Packet Transfer

However, some devices of reduced bandwidth and with limited internal buffering require
the interruption of DMA service whilst previously transferred data is processed. Transfer
Butterfly Microcontroller Handbook 10-5

is recommenced when the transfer request is retriggered. This transfer type is referred to
as Packet Transfer, and Transfer Type (CCR[10]) must be clear. The size of the buffer to
be transferred must be programmed into the channel Packet Size Register (PSR) .

Note that if Packet Transfer and Level Sensitive input are selected and the request is
negated BEFORE the number of transfers completed equals the number set in the
Packet Size Register , then the remaining words to transfer will be discarded by the DMA
controller; retriggering will cause the DMA Controller to reload the packet size from the
channel Packet Size Register . It is recommended that the input be Edge Sensitive.

Software Triggered Transfer

Software requests are issued when Software Request (CCR[2]) is set. Software requests
are usually terminated by channel completion, but may also be terminated in software by
clearing Software Request (CCR[2]) .

Sclk

Dreq

Sadd

Sdata

Dack

Terminal

n n+1

[n] [n+1]

n+2 n+3

[n+2] [n+3]

n+4 n+5

[n+4] [n+5]

Figure 10-5: Edge Triggered Packet Transfer (Size = 2)

Count

Sclk

Sadd

Sdata

start next end

[end]

Figure 10-6: Software Triggered Block Transfer

CCR

[2] = 1 [start] [next]

Chapter 10 - DMA Controller (DMAC) Issue 2.0

10.2.2 Dual Addressed (Buffered) Transfer

When data must be transferred from one memory block to another, or a peripheral device
does not provide support for implicit addressing through a hardware handshake, then an
10-6 Butterfly Microcontroller Handbook

explicit address is required for both source and destination. Each DMA transfer then
requires two bus transactions; the first to read the data from the source, and the second
to write the data to the destination. An explicit address is generated for each transaction,
and the data must be buffered internally by the DMA Controller between read and write.

The number of source data read transactions which may be performed before the
buffered data must be written to the destination is determined by the internal buffer
depth. In this DMA controller, the buffer depth is one word.

If dual addressed transfers are required, then two adjacent channels must be selected in
order to provide the source and destination addresses. The higher priority channel (lower
channel number) becomes the Read Channel, and Transfer Direction (CCR bit [8])
must be clear. The lower priority channel of the pair becomes the Write Channel, and
Transfer Direction (CCR[8]) must be set. Transfer Mode (CCR[9]) should be set for
both channels.

Source Data

Figure 10-7: Architecture of Dual Addressed DMA

Memory Memory
or

Peripheral
or

Peripheral

Source Address Destination Address

Destination Data

DMA Controller

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

Block Transfer

Some devices, such as memory, can process data at the full bus rate; then the data may
be transferred in consecutive bus cycles. This is referred to as a Block Transfer, and
Butterfly Microcontroller Handbook 10-7

Transfer Type (CCR[10]) must be set. The function of the hardware request signal is
determined by the value of Request Trigger Type (CCR[11]) .

Edge Triggered Block Transfer

If Request Trigger Type (CCR[11]) is clear, the channel becomes edge sensitive, and
monitors for the assertion of the request input of the Read Channel. Once triggered, the
channel will ignore subsequent transitions on the hardware request input until activity is
completed on both Read and Write Channels. The input must return to the negated level
before the channel can be retriggered.

Level Triggered Block Transfer

If Request Trigger Type (CCR[11]) is set, then the channel continues to test the
hardware request input throughout a transaction; if the input is then negated, channel
activity is halted after the remaining buffered data has been written to the destination,
and the channel returns to the Idle state.

Sclk

Dreq

Sadd

Sdata

Phase Read Write

s start d start

[s start]

Figure 10-8: Edge Triggered Block Transfer

Read Write

s end d end

[s end]

Sclk

Dreq

Sadd

Sdata

Phase Read Write Read Write

s d s next d next

[s] [s next]

Figure 10-9: Level Triggered Block Transfer

Chapter 10 - DMA Controller (DMAC) Issue 2.0

If the request is negated during the Write phase of the DMA transfer with no other
channel requesting DMA activity, then at least one empty bus cycle will be inserted
before the bus is granted to another bus master.
10-8 Butterfly Microcontroller Handbook

Edge Triggered Packet Transfer

However, some devices of reduced bandwidth and with limited internal buffering, such as
UARTs, require the interruption of DMA service whilst previously transferred data is
processed. Transfer is recommenced when the transfer request is retriggered. This
transfer type is referred to as Packet Transfer, and Transfer Type (CCR[10]) must be
clear. The size of the buffer to be transferred is dictated by the internal buffer depth, and
the Packet Size Register will be ignored.

Software Transfer Requests

Software requests are issued when Software Request (CCR[2]) is set. Software requests
are terminated by channel completion, and may also be terminated by clearing Software
Request (CCR[2]) . If Transfer Type (CCR[10]) is set, then the DMA controller will
transfer the entire block of data in consecutive read & write cycles.

Sclk

Dreq

Sadd

Sdata

Phase

s d s next d next

[s] [s next]

Figure 10-10: Edge Triggered Packet Transfer

Read Write Read Write

Sclk

Sadd

Sdata

Phase Read Write Read Write

s start d start s end d end

[s start] [s end]

Figure 10-11: Software Triggered Block Transfer

CCR

[2] = 1

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

It should be noted that the use of Block Transfer starves the processor of bandwidth. If
the user wishes to guarantee some bus bandwidth to the processor, then Transfer Type
(CCR[10]) must be clear, indicating Packet Transfers. This guarantees at least one idle
Butterfly Microcontroller Handbook 10-9

bus cycle between each DMA transfer.

The Read Channel should be programmed with appropriate values for the Base
Transfer Count Register , and the Base Address Register . Only the Base Address
Register need be programmed for the Write Channel; for Dual Addressed transfers, the
Packet Size Register of both channels and the Base Transfer Count Register and
Current Transfer Count Register of the Write channel have no effect on the operation.

Sclk

Sadd

Sdata

Phase

ds s next d next

[s] [s next]

Figure 10-12: Software Triggered Packet Transfer

Read Write Read Write

CCR

[2] =1

Chapter 10 - DMA Controller (DMAC) Issue 2.0

10.2.3 Configuration

Transfer Request (Dreq) and Transfer Acknowledge (Dack)
10-10 Butterfly Microcontroller Handbook

Hardware requests are enabled when Hardware Request Mask (CCR[1]) is set (See
Figure 10-4).The trigger polarity is programmed either high or low by Hardware Request
Polarity (CCR[3]) . DMA request sources are detailed in Table 10-4.

DMA transfers are acknowledged by assertion of the Dack output signal. The signal is
active high when Hardware Acknowledge Polarity (CCR[4]) is clear, or low when set.
Single Addressed transfers require the assertion of a hardware acknowledge, and
consequently Hardware Acknowledge Enable(CCR[5]) must be set. For Dual
Addressed transfers, a hardware acknowledge is not usually necessary, and is masked
out when the appropriate bit is clear.

Address Calculation

The address calculation performed by the DMAC is determined by the values of
Address Increment (CCR[7]) and Fixed Address (CCR[6]) .

• If Fixed Address (CCR[6]) is set, then the address will be held for each data transaction,
as is required when accessing a FIFO, for example.

• If Fixed Address (CCR[6]) is clear, then the address will be incremented if Address
Increment (CCR[7]) is set, otherwise it will be decremented.

• The address offset is dependent on the Value of Operand Size (CCR[13:12]) , with
offsets of 1, 2, and 4 for byte, half-word, and word transfers respectively.

The DMA controller does not directly support byte packing and unpacking, so Size
(CCR[13:12]) must have the same value in each channel. However, the Memory /
Peripheral Controller is capable of packing and unpacking operands as appropriate. See
Chapter 7 - Memory/Peripheral Controller (MPC) for details.

Re-initialisation

When a DMA transfer is complete, the DMA supports several options for re-initialisation:

• No initialisation - channel returns to Program state. Auto Initialisation (CCR[14]) should
be clear, and the state of Chained Transfer (CCR[15]) will be ignored.

• Auto-initialisation - channel re-initialises with values from the previous transfer as stored
in the Base Registers, and returns to Idle state. This mechanism supports repeated
transfers into and between memory buffers. Auto Initialisation (CCR[14]) should be set,
and Chained Transfer (CCR[15]) should be clear.

• Chained Transfer initialisation - the channel re-initialises with values from the Base
Registers, which are updated by the supervising processor as a result of an interrupt

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

service request, see below. Both Auto Initialisation (CCR[14]) and Chained Transfer
(CCR[15]) should be set. Interrupts must be enabled, so Interrupt Enable (CCR[16])
should also be set. This option provides for scatter / gather type operations, as
Butterfly Microcontroller Handbook 10-11

described below.

Chained Transfers

Many applications require support for the scattering and gathering of blocks of data. The
DMA controller offers a Chained Transfer mode, which allows multiple blocks of data to
be transferred with minimal processor intervention.When a channel programmed for
chained transfers is enabled, the current Registers are updated with the Base Register
contents, and an internal flag, Last Block, is set. Block Request (CSR[26]) is also set,
triggering an interrupt if Interrupt Enable (CCR[16]) is set.

Reading the Channel Status Register will clear Block Request (CSR[26]) , negating
the interrupt. New block values may now be written to the Base Registers . The Base
Address Register (in the case of Dual Addressed transfers, of the Read Channel)
should be written last, which will clear the Last Block flag. If this occurs before Terminal
Count (or Early Termination) is reached, then the chain is established, and the new Base
Register values are transferred to the Current Registers upon completion of the current
block. The first transfer of the new block will then proceed when appropriately triggered.
Since the new register values are loaded automatically, there is no requirement to re-
enable the channel - Channel Enable (CCR[0]) will be set from the previous block
transfer.

If the new Base Register values are not written (the Last Block internal flag remains
set), and the channel reaches Terminal Count or Early Termination occurs, then the
chain is broken, and the channel returns to the Program state, and indicates that the
chain has broken with Chain End (CSR[27]) set and Channel Enable (CCR[0]) clear. If
new block parameters are programmed, Channel Enable (CCR[0]) must be set to re-
enable the channel.

If the service routine does not read the Channel Status Register , Block Request
(CSR[26]) is also cleared after the Base Address Register is written.

Interrupts

Interrupts are enabled for a given channel by Interrupt Enable (CCR[16]) . This permits
the generation of an interrupt under the following conditions:

• No initialisation is programmed and Terminal Count is reached.

• A new transfer block is required, or the block chain is exhausted, when Chained
Initialisation is programmed.

• Upon detection of a bus error whilst undertaking a bus transaction.

Chapter 10 - DMA Controller (DMAC) Issue 2.0

The actual generating condition can be determined by reading the DMA Status Register
to identify the DMA channel requesting interrupt service, then by testing the
corresponding Channel Status Register . Note that this action also clears the register
10-12 Butterfly Microcontroller Handbook

(with the exception of the Alternate Phase (CSR[31]) indicator), thereby negating the
interrupt request. In Dual Addressed transfers, Interrupt Enable (CCR[16]) of the write
channel should be clear, disabling interrupts from that channel.

Channel Priorities and Bus Locking

Channel priorities are hard-wired, with channel 1 having the highest priority. A higher
priority channel may pre-empt a lower priority channel, except under one of the following
conditions:-

• For Single Addressed transfers, if Bus Lock (CCR[17]) is set. This guarantees the full
bus bandwidth to the currently active DMA transfer.

• For Dual Addressed transfers, if the Read or Write phase is currently active. The bus is
also automatically locked between the Read and Write phases to ensure atomic
DMA operations. Dual Addressed transfers may only be pre-empted between the last
write of one buffer and the first read of the next, unless Bus Lock (CCR[17]) is set. This
guarantees data consistency.

Other higher priority bus masters are also prevented from pre-empting the DMA
controller under these conditions.

DMA Devices External to the Microcontroller

As the implicitly addressed DMA targets of Single Addressed transfers may be either
internal or external to the microcontroller, it is necessary to indicate to the memory/
peripheral controller the location of the DMA target, so that the bus interface may be
switched to pipe data in the correct direction, or to remove bus drive as appropriate.

External Device (CCR[18]) should be clear if the target device is internal to the
microcontroller, and should be set if external. Note that for Dual Addressed transfers, this
bit should always be clear, as the data buffer for dual-addressed transfers is internal to
the DMA controller.

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

10.3 Programmer’s Model

Upon reset, each DMA channel is set to an inactive Program state, from which it may be
configured by a supervising processor. Since values written into the channel in any other
Butterfly Microcontroller Handbook 10-13

state may have undesired side effects, it is essential that the channel be put into
Program state first. Channel Enable (CCR[0]) must be clear; no other register bits
should be altered at this time. The programmer may verify that the channel is in Program
state by checking that Channel Enable (CCR[0]) is clear by reading the Control &
Status Register . When the channel is in Program State, there is no channel activity.
However, all internal registers may be read and written.

Channel Initialisation

The Packet Size Register , Base Transfer Count Register , and Base Address
Register may be modified in Program state; changes will not be immediately reflected in
the Current Transfer Count Register and Current Address Register . Once these
registers are configured, the channel may be enabled by setting Channel Enable
(CCR[0]) , at which point the values programmed into the Base Registers are transferred
to the Current Registers, and the channel enters Idle state. The settings of the other bits
in the Control & Status Register will dictate the subsequent operation of the channel.

10.3.1 DMA Registers

The DMA controller is of modular construction. A single DMA channel comprises one
DMA single address (Fly-by) engine. The exact behaviour of each channel and any
channel pairing is configurable by software. The software programmable internal
registers are mapped into the DMA controller address space by channel, with an
additional status register. Addresses are specified as offsets from the DMA controller
base address.

Address Offsets DMA Register Base Addresses

+0x000 DMA channel 1 base address

+0x010 DMA channel 2 base address

+0x020...
...+0x1F0

Reserved

+0x200 DMA controller Status Register (DSR)

Table 10-2: DMA Controller Registers

Chapter 10 - DMA Controller (DMAC) Issue 2.0

Each DMA channel contains a set of registers which allow the appropriate configuration
of the channel in software to perform a variety of DMA operations:
10-14 Butterfly Microcontroller Handbook

The register word offset must be added to the channel address offset and controller base
address to form the register address.

The DMA controller also integrates an internal data buffer, which is not visible to an
external processor. It is used to hold temporary data between the read and write phases
of a memory-memory transfer. On the Butterfly microcontroller, this buffer is one word.

Channel Control Register (CCR)

The Channel Control Register is a 24 bit read/write register, occupying bits [23:0]. It
defines the configuration of the DMA channels, and their operating behaviour. Upon
reset, the register is reset to zero. The register may be both read and written by the
supervising processor.

Channel Status Register (CSR)

The Channel Status Register is an 8-bit read-only register, occupying bits [31:24]. It
indicates the current status and termination conditions for the DMA channel. The register
is cleared to zero at reset, or when the register is read (with the exception of Alternate
Phase (CSR[31])). Writing to the status register has no effect on the status values.
.

Word Offset Bit
Reset
Value

Type Register

+0x0 23:0 0x000000 R/W Channel Control Register (CCR)

31:24 0x00 R Channel Status Register (CSR)

+0x4 7:0 0x00 R/W Packet Size Register (PSR)

+0x8 15:0 Undefined W Base Transfer Count Register (BTR)

+0x8 15:0 0x0000 R Current Transfer Count Register (CTR)

+0xC 31:0 Undefined W Base Address Register (BAR)

+0xC 31:0 0x00000000 R Current Address Register (CAR)

Table 10-3: DMA Controller Channel Registers

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

Bit Name Description

0 Channel Enable [0] - Channel is in Program state, all DMA operations are
Butterfly Microcontroller Handbook 10-15

disabled, and the clock to the channel circuitry is halted.
[1] - Internal current registers are updated, and the chan-
nel enters Idle state, ready for operation.

1 Hardware Request
Mask

[0] - Activity on the request input is ignored.
[1] - Channel responds to activity on the request input in
accordance with the setting of the Hardware Request
Polarity and Request Trigger Type bits.

2 Software Request [0] - No activity
[1] - Channel responds by performing the requested
transfer; upon completion, the bit is clear.

3 Hardware Request
Polarity

[0] - active high,
[1] - active low

4 Hardware Acknowl-
edge Polarity

[0] - active high,
[1] - active low

5 Hardware Acknowl-
edge Enable

[0] - Hardware acknowledge signal remains in inactive
state as defined by Hardware Acknowledge Polarity
[1] - Hardware acknowledge signal is set during bus
cycles during which a peripheral is implicitly addressed

6 Fixed Address [0] - Address is modified on consecutive transfers accord-
ing to the Address Increment bit
[1] - Address is static

7 Address Increment [0] - Address is decremented,
[1] - Address is incremented

8 Transfer Direction [0] - Data read from memory, [1] - Data write to memory.

9 Transfer Mode [0] - Memory - peripheral, with peripheral implicitly
addressed using hardware handshake mechanism
[1] - Memory - memory, with both source and destination
explicitly mapped into memory

10 Transfer Type [0] - Packet transfer, size dictated by Packet Size Register
or by depth of internal data buffer
[1] - Block transfer, size equal to Transfer Count

11 Request Trigger
Type

[0] - Edge trigger; request must return to inactive state
before new transfer can be triggered
[1] - Level trigger; request must remain in active state for
successive transfers

Table 10-4: Channel Control Register (CCR) - offset +0x0

Chapter 10 - DMA Controller (DMAC) Issue 2.0

12,13 Operand Size 13,12 : [00] - Byte,
[01] - Half Word,
[10] - Word,
10-16 Butterfly Microcontroller Handbook

[11] - Reserved, not permitted

14 Auto initialisation [0] - no auto initialisation
[1] - channel is reinitialised from channel base registers
when current transfer is complete

15 Chained Transfer [0] - Reinitialisation from base registers only
[1] - Reinitialisation triggers interrupt request

16 Interrupt Enable [0] - disabled,
[1] - enabled

17 Bus Lock [0] - disabled, may be interrupted by higher priority device
[1] - enabled, locks bus for duration of transfer

18 External Device [0] - Peripheral is internal to controller
[1] - Peripheral is external to controller

19-23 Reserved Not writable, read as zero (0)

24 Terminal Count [1] Channel word count has decremented to zero, com-
pleting the transfer and halting channel operation

25 Reserved -

26 Block Request [1] In chained transfer mode, a new transfer block should
be programmed into the channel base registers

27 Chain End [1] In chained transfer mode, a new transfer buffer was
not programmed before the current buffer was exhausted

28 Reserved -

29 Bus Halt [1] Indicates that an error condition was signalled on
b_error or the bus mode signals

30 Reserved -

31 Alternate Phase [1] In dual address mode, indicates that read channel is
idling whilst awaiting the completion of the write channel
(only valid on read channel)

Table 10-5: Channel Status Register (CSR) - offset +0x0

Table 10-4: Channel Control Register (CCR) - offset +0x0

Issue 2.0 Chapter 10 - DMA Controller (DMAC)

Packet Size Register (PSR)

This register defines the size, in number of data transfers, of device register queues,
such as FIFOs, on implicitly addressed peripherals in single addressing mode, thereby
Butterfly Microcontroller Handbook 10-17

avoiding buffer overflow. The Packet Size Register should be loaded with the required
packet size minus one; thus a value of zero indicates a packet size of one, while a value
of 0xFF indicates a packet size of 256. The register is cleared at reset, and may be both
read and written.

Base Transfer Count Register & Current Transfer Count Register (BTR, CTR)

The Base and Current Transfer Count Registers define the initial transfer block size,
and the remaining number of data transfers, respectively. During channel initialisation,
the Base Transfer Count Register is loaded with the required transfer block size minus
one; thus a value of zero indicates one transfer, whilst 0xFFFF indicates 65536 transfers.
This value is subsequently written through to the Current Transfer Count Register
when the channel is enabled. During a DMA transfer cycle on that channel, the transfer
count held in the Current Transfer Count Register is read, decremented and rewritten
to the Current Transfer Count Register . If the current transfer count value equals zero,
the transfer of data is completed with the current transaction, and the channel halts
subsequent transfers. Upon completion of the block transfer, the Current Transfer
Count Register may optionally be updated from the Base Transfer Count Register in
order to auto-initialise the channel for repetitive DMA activity.

Bit Name Description

7:0 Packet Size Register Size limit of single DMA transfer packet - 1

31:8 Reserved Not writable; all bits read as 0

Table 10-6: Packet Size Register (PSR) - offset +0x4

Bits Name Description

15:0
(Write)

Base Transfer Count
Register

Initialisation value for transfer block size -
Programmed value should be block size - 1

15:0
(Read)

Current Transfer
Count Register

Current value indicating remaining transfer count -1

31:16 Reserved Not writable; all bits read as 0

Table 10-7: Transfer Count Registers - offset +0x8

Chapter 10 - DMA Controller (DMAC) Issue 2.0

Base Address Register & Current Address Register (BAR, CAR)

The Base and Current Address Registers define the initial and current addresses
within the block of memory or I/O being transferred. During channel initialisation, the
10-18 Butterfly Microcontroller Handbook

Base Address register is loaded with the starting address of the block; this is
subsequently written through to the Current Address Register when the channel is
enabled. During a DMA transfer cycle on that channel, the address held in the Current
Address Register is output from the controller, simultaneously incremented or
decremented as appropriate, and then rewritten to the Current Address Register ,
which then points to the next data item to be transferred. Upon completion of the block
transfer, the Current Address Register may optionally be updated from the Base
Address Register in order to auto-initialise the channel for repeated DMA transfers. If
the size of the transfer (as indicated by the Transfer Count registers) causes the Current
Address Register to overflow or underflow the 32-bit address space, the address wraps
around.

DMA Status Register (DSR)

The DMA Status Register indicates the current condition of each channel, and hence
allows the programmer to rapidly determine which DMA channels require service. Each
bit corresponds to one channel, with the lowest order bit corresponding to channel 1. A
status bit is set in the DMA Status Register if interrupts are enabled for the associated
channel and any bit (with the exception of Alternate Phase (CSR[31])) is set in the
Channel Status Register . (table 10-5). This register is read-only.

Bits Name Description

31:0 (Write) Base Address Register Initial address of transfer block

31:0 (Read) Current Address Register Calculated address of next transfer

Table 10-8: Address Registers - offset +0xC

Bits Name Description

31:0 (Read) Channel Status Reflects service request status of each channel

Table 10-9: DMA Controller Status Register (DSR) - offset +0x200

Chapter 11 - Timer/Counter (TIC)
Butterfly Microcontroller Handbook 11-1

11.1 Overview

Butterfly contains two Timer/Counter modules. A Timer/Counter module comprises a pair
of identical, generic 32 bit interval timer elements. These are controlled by the ARM7
core processor via the Bµild bus.

Each timer-element includes a prescaler that is driven by the system clock, to generate
internal timer clocks. The main time interval is then generated by counting these timer
clock periods. An interrupt may be generated after the desired number of clock periods.

A pulse width modulation (PWM) mode can be configured by combining both timer
elements in a Timer/Counter module together. In this mode one timer element controls
the high period of an external output, with the other controlling the low period, offering
the user complete control over the period and shape of the external output pulse train.

11.1.1 Design Features

The main features of each Timer/Counter module are:

• Two, independently controlled Timer/Counter elements

• Prescalers generating a Timer clock from the system clock

• Prescale count of 8 bits

• Division ratio selection by software

• Multiple Timer/Counter modes:

• countdown to zero

• free running

• reload and count on trigger

• pulse width modulation

• Fully software programmable time-out period

• Maskable interrupt on time-out

• PWM waveform generation by combining the two Timer/Counter elements

Chapter 11 - Timer/Counter (TIC) Issue 2.0

11.2 Architecture

y be

 Timer A
11-2 Butterfly Microcontroller Handbook

* Where x = Timer (e.g.: 1, or 2). see section Figure 1-3: on page 14 for external
interface connections

Figure 11-1: Timer/Counter Architecture

11.3 Operational Description

The Timer/Counter consists of two independent synchronous counter elements, both 32
bits long. Each counter has an associated prescale counter, which is used to scale the
input clock to its main counter. Both prescalers are fed from the internal system clock,
which is derived from the Phase Locked Loop. Reference should be made to the Chapter
describing the PLL operating modes for a description of how those modes affect the
supplied clock.

The counters are started by controlling the C/H (Count/Halt) bit in the Control/Status
(CONSTAT) register. When a counter reaches zero the Overflow (OVF) status flag is set in the

CONSTAT register and an interrupt pulse will be generated, however this interrupt ma

masked by resetting theMSK bit in theCONSTAT register.

Each counter has the following operating modes:

• Count-Down to zero

• Free Running

• Reload and count on trigger

• Pulse Width Modulation

Internal

System

Clock

 Interrupt

 pwm

 output

 Timer B

 Interrupt

Counter A

Counter B

BµILD
Bus

interface

 PWM

 Logic

 prescaler A

 prescaler B

tenxA*

tenxB*

Issue 2.0 Chapter 11 - Timer/Counter (TIC)

An external Pulse Width Modulated output is available from Timer 2 only.

11.3.1 Prescaler Operation
Butterfly Microcontroller Handbook 11-3

The prescaler operates as an 8 bit auto-reload counter, clocked from the system clock.
The prescaler continually counts down towards zero. Upon reaching zero it outputs a
clock pulse to the main counter and is reloaded with the value in the reload field of the
control/status register.

The PreScaler is disabled when the PreScale register is loaded with the value 0x01, and
the counter counts system clock cycles.

When a value other than 0x01 is stored in the register, the Prescaler counts from that
value down to zero, generating a pre-scaled clock pulse as it reloads, thus dividing the
system clock by the value (PreScale + 1).

The value 0x00, when programmed into the PreScaler causes the clock to be divided by
257.

The PreScaler counts the falling clock edges and the counter is activated on the
following rising clock edge, thus all interrupts generated by the counter reaching zero are
activated on the rising edge of the system clock.

11.3.2 Halt on Zero (Mode 0)

The counter decrements from ‘0xFFFFFFFF’. When the counter reaches zero, it is
reloaded from the reload register and halts until it is retriggered. This is achieved either
by a transition on the external enable, or by setting the C/H bit under software control. On
reaching zero the OVF flag is set and a Timer interrupt may be generated.

11.3.3 Free Running (Mode 1)

When the counter is initially started in Free Running mode, it starts from the value
‘0xFFFFFFFF’. Upon reaching zero the counter is reloaded with the preset value and
resumes counting from that value. A Timer interrupt may be generated, note that in this
mode OVF will not be set and the counter will continue to run.

If required, the initial count from ‘0xFFFFFFFF’ may be avoided by starting the counter in
Mode 2 with the required value, then stopping before it reaches zero and changing the
mode to Free Running. In this case, the counter will restart in the new mode from the
value at which it last stopped. This can also apply to Mode 0.

Chapter 11 - Timer/Counter (TIC) Issue 2.0

11.3.4 Reload on Trigger (Mode 2)

The counter is reloaded when it receives a start trigger on the external enable input or C/
H bit, and will then begin to decrement. Upon reaching zero the counter will halt, setting
11-4 Butterfly Microcontroller Handbook

the OVF flag and generate an interrupt (if enabled).

11.3.5 Pulse Width Modulation (Mode 3)

One counter is reloaded and started automatically when the other counter reaches zero.
Upon reaching zero the counter halts, toggles the state of the PWM output and triggers
the other counter to run. This mode generates a variable width pulse train on the PWM
output with counter A controlling the low phase and counter B controlling the high phase.

Proper functioning of the PWM mode requires that both counters A and B are set to
mode 3. Counter B should be set to start first, as the PWM waveform always starts with a
high phase. If counter A is started first the Timer will not begin correct PWM operation
until both counters A and B have timed out for the first time.

On BUTTERFLY the PWM output (external pin Tpwm) is generated by Counter/Timer 2.
The PWM output of Counter/Timer 1 is not available.

As each counter uses a PreScaler, which have two modes of operation, there are two
algorithms for the PWM output .

PreScale = 0x01;

pwmLo = RLDA + 1;

pwmHi = RLDB +1;

PreScale <>0x01;

pwmLo = ((PreScale+1) * RLDA) -1 ;

pwmHi = ((PreScale+1) * RLDB) +1 ;

Issue 2.0 Chapter 11 - Timer/Counter (TIC)

11.4 Programmer’s Model

Address Offset Reset
Butterfly Microcontroller Handbook 11-5

Addresses are specified as offsets from the system defined base address.

All the registers are accessed as 32-bit registers, with unused bits defined as zero for
read operations. Attempts to access any register with a half-word or byte transfer results
in a bus error, as do any accesses to reserved registers or writes to read-only registers.
In all cases the following register descriptions apply equally to timer A and timer B.

11.4.1 Register Descriptions

Control/Status Register (CONS TATA/CONSTATB)

This register contains the configuration information and status flags for the associated
interval timer.

(Hexadecimal)
Function

Value
R/W

+ 000 Timer A control/status register
(CONSTATA)

See
Table 11-2

RW

+ 004 Timer A reload register (RLDA) 0xFFFFFFFF RW

+ 008 Timer A read Register (RDA) 0xFFFFFFFF R

+ 00C - + 01C Reserved -

+ 020 Timer B control/status register
(CONSTATB)

See
Table 11-2

RW

+ 024 Timer B reload register (RLDB) 0xFFFFFFFF RW

+ 028 Timer B read register (RDB) 0xFFFFFFFF R

+ 02C - + FFC Reserved -

Table 11-1: Timer/Counter Address Map

MSK OVF MODE C/H ACT RUN Prescale Reload

7 015 81617181920212231 23

Chapter 11 - Timer/Counter (TIC) Issue 2.0

Figure 11-2: Control/Status Register

BIT Number Name Description
Reset

R/W
11-6 Butterfly Microcontroller Handbook

The Counter Reload Register (RLDA/RLDB)

This register holds the 32-bit reload value for the main counter which, in conjunction with
the prescaler’s reload value, determines the period of the count. Thus the interval timed
can be calculated as:

Value

MSK 22 Interrupt
Mask Bit

[0] Prevents interrupt generation when zero 0 R/W

OVF 21 Timer
Overflow

[1] Set whenever the main counter reaches zero,
except when the counter is in free running mode.
Reset by any action which restarts the counter, e.g.
writing C/H = 1 or setting the external enable pin
active

0 R

MODE 20, 19 Timer
Mode
Control

A two bit field controlling the operating mode of the
interval timer.

Bit 20/19:
00 = Halt on Zero
01 = Free Running
10 = Reload in Trigger
11 = Pulse Width Modulation

00 R/W

C/H 18 Count [1]/
Halt [0]

Controls the state of the main counter. When the
counter is externally enabled, setting this bit
causes a halted counter to begin counting. Re-set-
ting this bit will cause a running counter to halt.
Stopping a counter which has already halted or
attempting to start a running counter has no effect.

1 R/W

ACT 17 External
Enable
Polarity

Determines the sense of the external counter ena-
ble input (when present).

0 = active low
1 = active high

1 R/W

RUN 16 Timer Run
Status

When set, indicates that the main counter is
currently enabled and is running.

0 R

Prescale msb.....lsb
7....... 0

Clock
Prescale
Factor

Clock division ratio applied by the pre-scaler.
Division ratios of 1 to 255 correspond to values
0x01 to 0xFF, 0x00 gives the ratio 256. For correct
prescale operation, on the first occurrence of Timer
overflow (OVF) the prescale should only be
changed when the C/H bit is reset.

0xFF R/W

Table 11-2: Control/Status Register bit descriptions

Ttimer
ReloadValue PreScale1+()×

f BCLK
---=

Issue 2.0 Chapter 11 - Timer/Counter (TIC)

BCLK is the internal Bµild bus clock which is derived from SCLK. For full details of this,
refer to Chap 4 - Phase Locked Loop, which describes how the different PLL modes
Butterfly Microcontroller Handbook 11-7

affect the clock.

At Reset the initial value shall be 0xFFFFFFFF.

The Counter Read Register (RDA/RDB)

This register holds the current 32-bit count value of the counter. At Reset the initial value
shall be 0xFFFFFFFF.

Chapter 11 - Timer/Counter (TIC) Issue 2.0
11-8 Butterfly Microcontroller Handbook

Chapter 12 - Watchdog Timer (WDOG)
Butterfly Microcontroller Handbook 12-1

12.1 Overview

The function of the Watchdog Timer is to detect hardware or run-time software errors. It
performs this function by requiring the processor to write to one of its registers
periodically. Should this not occur, the Watchdog will timeout and reset the system. This
ensures that hardware/software lock-ups are recoverable.

The watchdog timer generates periodic interrupts to the ARM processor. Should the
processor not respond to the interrupt within a certain time a secondary counter times
out and resets the system. To respond, the processor needs to write a specific,
predefined value into the restart register. This “key” is necessary to guard against errant
software accidentally restarting the watchdog, since it is extremely unlikely that it would
write the correct 32-bit number into the watchdog restart register.

12.1.1 Design Features

The main features of this watchdog timer are:

• External enable/disable watchdog pin

• “Key” mechanism for restarting the watchdog prevents accidental restarts

• Adjustable interrupt frequency

• Adjustable timeout delay

12.2 Architecture

Figure 12-1: Watchdog Structure

 Primary
 counter

 WDOG
Timeout

 WDOG
Interrupt

 Secondary
counter

BµILD

 System
Clock

 (SCLK)

 Bus
 interface

(to system reset)

Wden

Chapter 12 - Watchdog Timer (WDOG) Issue 2.0

12.3 Operational Description

The watchdog consists of two counters, the primary, which is 32 bits long, and the
secondary, which is 8 bits long. Both counters are clocked off the system clock, Sclk; the
12-2 Butterfly Microcontroller Handbook

primary directly, and the secondary via a divide-by-sixteen pre-scaler.

12.3.1 Timer Operation and Watchdog Restart Key

When enabled, the primary counter counts down from its 32 bit reload value towards
zero. On reaching zero, the Watchdog will generate an interrupt to the ARM processor.
The interrupt can be masked out by using the MSK bit in the watchdog control register.

It then starts the secondary counter counting down to zero and sets the overflow (OVF)
flag in the control register. If the processor fails to restart the watchdog before the
secondary counter reaches zero, it will generate a timeout signal which causes a system
reset.

To restart the watchdog counter, a specific 32 bit value (=0xECD9F7BD) must be
programmed into the watchdog restart register. This 32 bit “key” activates the restart
mechanism which performs the following actions:

• Loads the watchdog primary counter from the reload register

• Resets the OVF (overflow) flag in the control register

• Restarts the primary counter

• Reloads and disables the secondary timeout counter

• Removes the timeout signal

The reload register enables the time before an interrupt is generated to be varied in
software. Changes to the reload register value will only be reflected in the main
watchdog counter after the next software reload.

Issue 2.0 Chapter 12 - Watchdog Timer (WDOG)

12.4 Programmer’s Model

Addresses are specified as offsets from the WDOG base address as defined by the
system configuration.
Butterfly Microcontroller Handbook 12-3

12.4.1 Control Register Format

The control register is 32 bits wide, with unused bits defined as zero. Attempts to access
the register as a byte or a half-word will cause a bus error exception. The register is
defined as follows, with all control bits active high:

• A single bit mask (MSK) which controls whether the zero count state of the watchdog
generates an interrupt to the ARM processor.

• A single read-only bit field (OVF) which is set whenever the watchdog reaches zero. OVF
can only be reset by restarting the watchdog timer.

• An additional (RUN) bit, valid only when reading the control register, shows whether the
watchdog counter is currently enabled.

• An 8 bit field containing the timeout delay used by the secondary watchdog timer.

Figure 12-2: Control Register Format

Address Offset
(Hexadecimal)

Function
Reset
Value

Type Comments

+ 000 Control/Delay
Register

0x000000FF RW See 12.4.1.

+ 004 Reload Regis-
ter

0xFFFFFFFF RW controls interrupt frequency

+ 008 Read Register 0xFFFFFFFF R current primary counter
value

+ 00C Restart Regis-
ter

0x00000000 W “key” input
Key value = 0xECD9F7BD

+ 010.....FFF Reserved -

Table 12-1: Register Map

RUNMSK
19 18 0716

Timeout Delay
17

OVF
31

MSB LSB

Chapter 12 - Watchdog Timer (WDOG) Issue 2.0

12.5 External Interface

The WDOG has one external port, the enable input (nWden). The timing relationship
between nWden and the main system clock (SCLK) is shown in Figure 12-3.
12-4 Butterfly Microcontroller Handbook

Figure 12-3: Timing Relationship Between nWden and Sclk

Sclk

min. setup time = min. hold time =
Sclk rising to nWden

nWden

nWden failing to Sclk

Appendix A - B µILD Bus Operation
Butterfly Microcontroller Handbook A-1

A.1 Introduction

The Mitel’ Microcontroller product range uses a system Bus known as BµILD (Bus for
µController Integration in Low-power Designs)

Although the designer need not know details of the internal operation of this bus for most
applications, the implementation details are included for information purposes.

This chapter contains a technical overview of the protocols associated with bus
arbitration and bus transactions

This represents sufficient information to give a working knowledge of the implementation of
the BµILD Bus within Mitel embedded ARM systems. The BµILD architecture is optimised for
efficient on-chip embedded systems. It is primarily designed to support ARM CPUs and
support modules, but is extensible to other processors and logic.

The ARM7 CPU is a small and powerful 32-bit RISC CPU module suitable for integration in
larger ASIC designs. However when designing such embedded systems the following
problems must be addressed:

• Ad-hoc system design from scratch for each deeply embedded design significantly
extends time to market and/or project development resource requirements.

• Manufacturing test requires fast efficient access to all component modules and I/Os,
together with a rapid route for test pattern generation.

• The development of microprocessor based systems requires the use of Debug
techniques such as Logic analysis and ICE. These techniques can require special chip
bond-outs to gain access to the embedded CPU core and to enhance system visibility.

Through the use of Bµild, a modular approach is taken to solve these problems. Libraries of
macro-functions (modules) complete with associated test patterns and software drivers may
be constructed and subsequently re-used within differing designs.

The following text describes the key aspects of BµILD including the principal functional
elements and protocol definitions.

A.1.1 Bus Masters

The bus master is the controller of the current bus transaction. A bus master initiates bus
requests (which automatically managed by Butterfly’s internal Bus arbitor), generates
addresses and controls data transfers while it has bus access, by reading or writing data
over the data bus.

Appendix A - BmILD Bus Operation Issue 2.0

Bus masters on Butterlfy are:

• The CPU(s)

• Direct Memory Access (multi-channel) controller(s)
A-2 Butterfly Microcontroller Handbook

• BµILD Broadcast Module (for external test and debug)

A.1.2 Bus Slaves

A bus slave responds to addresses present on the internal Bus that are in its allocated
range within the address map. It will supplies or receives data during read or write cycles
on demand. A slave may set a wait signal to delay access using the synchronous bus
transfer protocol.

Example slave devices are:

• UARTs

• The MPC

• Timers

• POCO

A.1.3 System Arbitration and Multiple Bus Master Support

The bus specification supports multiple bus masters. Bus masters must request the bus
using a centralised arbiter. For example, DMA controllers may share the bus with one or
more CPUs with the priorities resolved by the arbitration logic. The arbitration is pipelined
by one clock cycle to avoid the need for redundant bus cycles during bus mastership
changes .

Bus Masters

All bus masters are able to arbitrate for the bus using a request and grant protocol. When
the bus is not granted, the master isolates itself from the bus and not drive or respond to
the bus control signals. A bus master will drive the full 32 bit address bus during bus
ownership, and drive the full 32 bit data bus during bus writes. The bus master also
samples and responds to the bus control signals set by slave devices to indicate their
status.

Issue 2.0 Appendix A - BmILD Bus Operation

Bus Slaves

Bus slaves, both internal memory and I/O devices, are selected by the decoding of the
master’s broadcast address. When selected during the address decode phase, the slave
Butterfly Microcontroller Handbook A-3

drives the bus status signals to indicate the condition of the current transaction. Invalid or
illegal transaction types are indicated either directly by the slave or by an associated
protection mechanism. The slave drives the full 32 bit data bus during read transactions.
The data transaction phase may be extended if necessary for multiple bus cycles to allow
for slaves with long transaction latencies.

Appendix A - BmILD Bus Operation Issue 2.0
A-4 Butterfly Microcontroller Handbook

Appendix B - Physical and Electrical Specifications
Butterfly Microcontroller Handbook B-1

B.1 Device I/O Summary

Mnemonic Type Function

Dreq1,2 I DMA request

Dack1,2 O DMA acknowledge

Sclk IO System clock input or output

Oscen I Oscillator Enable

Set_3V I Select 3 Volt/ 5 Volt Supply mode

Pllpd I Disable Phase Locked Loop

Oscin/Bypass I Crystal connection/Clock Mode

Oscout O Crystal connection

nSreset I System reset input, has 100K pull up resistor for use with external
capacitor

Sdata<31:0> IO Data inputs/outputs

Sadd<21:0> IO Address Outputs

nScs<3:0> O Chip selects for external memory system

nSwe<3:0> O Write enables for external memory system

nSoe O Output enable for external memory system

Swait I Causes wait states within the MPC

Sr_size<1:0> I Reset bus size

*Sbigendian I Bigendian select

Ten1 I Timer enable-1

Ten2 I Timer enable-2

Tpwm O Timer PWM output

nWden I Watchdog enable

Utxd1,2 O UART transmit data

Table B-1: Device I/O Summary

Appendix B - Physical and Electrical Specifications Issue 2.0

Urxd1,2 I UART receive data

Mnemonic Type Function
B-2 Butterfly Microcontroller Handbook

* Sbigendian applies to the MPC, to change the orientation of how bytes are
read/written. Note internally to the device, ARM core BIGEND pin is tied low.

Ueclk/nUdcd 1,2 I UART external clock/
Data Carrier Detect

nUrts1,2 O UART ready to send

nUcts1,2 I UART clear to send

Pdat<7:0> IO Parallel port data port

nPstrb I Parallel port data strobe

nPack I Parallel port acknowledge

nPobf O Parallel port output buffer full

Pibf O Parallel port input buffer full

Iextint1,2 I External interrupt inputs

Bdiag<3:0> O Encoded bus state

VDD - Power

GND - Ground

Table B-1: Device I/O Summary (Continued)

Issue 2.0 Appendix B - Physical and Electrical Specifications

B.2 Pin Position Details

Key :
Butterfly Microcontroller Handbook B-3

Shaded areas: Outputs

n = active low signal

Reserved <DNC> = Reserved, Do Not Connect

Reserved <Low> = Reserved, Tie to 0 Volts

Reserved <High> = Reserved, Tie to VDD

Please see next page for pin assignments.

Appendix B - Physical and Electrical Specifications Issue 2.0

1 CP (VDD) 37 CP (GND) 73 CP (VDD) 109 CP (GND)

Sadd<14> Sdata<5> Pibf 110 Reserved <Low>

Sdata<13> Sadd<5> 75 nPobf Reserved <Low>
B-4 Butterfly Microcontroller Handbook

Sdata<29> 40 Sdata<4> nPack Reserved <DNC>

5 Sadd<13> Sdata<20> nPstrb Reserved <Low>

Sdata<12> Sadd<4> Pllpd Reserved <Low>

Sdata<28> Sdata<3> GND 115 Bdiag<0>

Sadd<12> Sdata<19> 80 VDD Bdiag<1>

Sdata<11> 45 Sadd<3> Pdat<7> Bdiag<2>

10 Sdata<27> Sdata<2> Pdat<6> Bdiag<3>

GND GND Pdat<5> Sr_size<0>

VDD VDD Pdat<4> 120 Sr_size<1>

Sadd<11> Sdata<18> 85 Pdat<3> GND

Sdata<10> 50 Sadd<2> Pdat<2> VDD

15 Sdata<26> Sdata<1> Pdat<1> Tpwm

Sadd<10> Sdata<17> Pdat<0> Ten2

Sdata<9> Sadd<1> VDD 125 Ten1

Sdata<25> Sdata<0> 90 GND Iextint2

Sadd<9> 55 Sdata<16> Oscin/Bypass Iextint1

20 GND Sadd<0> Oscout nSoe

VDD nSreset Set_3V nWden

Sdata<8> Dreq2 nUcts2 130 Sadd<19>

Sdata<24> Dack2 95 nUrts2 Sadd<21>

Sadd<8> 60 VDD Urxd2 Sadd<18>

25 Sdata<7> GND Utxd2 Oscen

Sdata<23> Dreq1 Ueclk2/nUdcd2 GND

Sadd<7> Dack1 VDD 135 VDD

VDD nScs<2> 100 GND Sadd<17>

GND 65 nScs<3> Sclk Sadd<20>

30 Sbigendian nScs<1> nUcts1 Sadd<16>

Swait nScs<0> nUrts1 Sdata<15>

Sdata<22> nSwe<3> Urxd1 140 Sdata<31>

Sdata<21> nSwe<2> 105 Utxd1 Sdata<30>

Sdata<6> 70 nSwe<1> Ueclk1/nUdcd1 Sadd<15>

35 Sadd<6> nSwe<0> Reserved <LOW> Sdata<14>

36 CP (VDD) 72 CP (GND) 108 CP (VDD) 144 CP (GND)

Issue 2.0 Appendix B - Physical and Electrical Specifications

B.3 Package Options

The standard package for the Butterfly is a 144 Plastic Quad Flat Pack and is detailed
below. A 144 TQFP (Body size 20 x 20 mm) version is also available on special order,
Butterfly Microcontroller Handbook B-5

please contact your local Mitel Representative for details.

Pin pitch : 0.65mm

Body size: 28 x 28mm

Packing: Supplied in Trays of 24 pieces

Figure B-1: BUTTERFLY 144 Plastic Quad Flat Pack

Appendix B - Physical and Electrical Specifications Issue 2.0

B.4 Electrical performance Characteristics.

Details of these can be found in a separate document entitled “Butterfly Microcontroller
Performance Supplement” publication number SP4578
B-6 Butterfly Microcontroller Handbook

Appendix C - Further Information

Further information on Mitel’ ARM and other products may be found on our World-Wide
Butterfly Microcontroller Handbook C-1

Web page: www.mitelsemi.com

C.1 Related Documents

The following documents may be of use when evaluating and developing ARM based
systems:

Document Publication Number

Data Sheets and Specifications:

Butterfly Microcontroller Performance Supplement SP4578

ARM60-B Microprocessor (incorporating an ARM6 core plus
JTAG)

DS3553

ARM610-B Microprocessor:
(incorporating an ARM6 core, 4K Cache, MMU and JTAG)

DS3554

Product Overviews

Butterfly High Performance, Low Cost 32-bit Microcontroller LF4097

Microcontroller Family Development Support LF4380

ARM Software Development Toolkit for Windows LF4317

An Introduction to Thumb MS4417

Application Notes:

HP Logic Analyser Support for Butterfly

ARM6 in DSP Applications: Use of the MUL Instruction

Benchmarking, Performance, Analysis and Profiling

Customising the ARMulator

Table C-1: Related Documents

Appendix C: Further Information Issue 2.0

 Implementing Fast Fourier Transforms on the ARM Risc Processor

Document Publication Number
C-2 Butterfly Microcontroller Handbook

JPEG compression on the ARM processor

 Rules for ARM Code Writers

..... Please call for copies or information on other topics

Table C-1: Related Documents

Issue 2.0 Appendix C - Further Information

C.2 Worldwide Offices
Key: CS = Customer Services, SD = Semi-Custom Design Services

g any
Butterfly Microcontroller Handbook C-3

Europe
France CS SD Mitel Semiconductor, France. Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07.

Germany CS SD Mitel Semiconductor, Germany. Tel: (089) 3609060 Fax: (089) 36090655

Italy CS Mitel Semiconductor, Italy. Tel: (02) 6607151 Fax: (02) 66040993.

Sweden CS Mitel Semiconductor, Sweden.Tel: (08) 7029770 Fax: (08) 6404736.

UK, Eire, Denmark,
Finland, Norway

CS SD Mitel Semiconductor, UK, Tel: (01793) 726666 Fax: (01793) 518582.

Far East
Korea CS Mitel Semiconductor, Seoul, Korea. Tel: (2) 5668141 Fax: (2) 5697933

Japan CS SD Mitel Semiconductor, Tokyo, Japan. Tel: (03) 5276-5501
Fax: (03) 5276 5510.

S.E Asia CS Mitel Semiconductor, Singapore. Tel: 3827708 Fax: 3828872

Taiwan CS Mitel Semiconductor, Taipei, Taiwan. Tel: (02) 5461260 Fax: (02) 719 0260

USA & Canada

USA & Canada
CS SD Mitel Semiconductor, Scotts Valley, CA, USA.Tel: (408) 438 2900

Fax: (408) 438 7023

South West
CS SD Mitel Semiconductor, Irvine, CA, USA. Tel: (714) 852-3900

Fax: (714) 852-3910

North West
CS SD Mitel Semiconductor, San Jose, CA, USA. Tel: (408) 451-4700

Fax: (408) 451-4710

Central and East
CS SD Mitel Semiconductor, Dedham, MA, USA. Tel: (617) 251-0100.

Fax: (617) 251-0104

Mitel also has many other franchised Distributor outlets World-wide. Details can provided by contactin
of the above numbers.

Appendix C: Further Information Issue 2.0
C-4 Butterfly Microcontroller Handbook

Appendix D - PCB Layout Guidelines

The Butterfly device is a fully featured microcontroller capable of being used with an 8,
Butterfly Microcontroller Handbook D-1

16, or 32 bit external memory bus. As such, whilst the power consumption of the
embedded ARM is low, in common with other microcontrollers, significant near-
instantaneous step-changes in dynamic current consumption can occur during state
changes on the external address and data buses. It is therefore most important that a
well regulated power supply source with sufficient dynamic current sourcing capacity
must be used to prevent temporary VDD depression under conditions of high
instantaneous current sourcing.

D.1 Considerations regarding Power distribution

A minimal resistance ground connection must be provided to prevent temporary rises in
potential on Ground (GND) pins under conditions of high instantaneous current sinking.

To minimise these effects the following recommendations are made for production
systems:-

(i) The Microcontroller should be soldered directly on to the same PCB as all it's memory
devices. Ideally, a single PCB only should be used.

(ii) The PCB should have a GND power plane, and a separate VDD power plane.

(iii) Each adjacent GND/VDD pin pair of the microcontroller must be adequately and
locally decoupled by a capacitor or capacitors connecting between the VCC supply and
GND pins of the pair. Decoupling must be as close to the pin-pairs as physically possible,
and within 1cm's distance maximum. A suggested value is 0.1 µF Ceramic. Surface
mount

capacitors are preferable to pinned capacitors, due to their lower inductance.

(iv) A power supply reservoir capacitor may be used to smooth out small transients on
the VDD line. A suggested value is between 50 and 100 µF electrolytic.

Appendix D: PCB Layout Guidelines Issue 2.0

D.2 Considerations regarding PCB track lengths

The output stages of the Butterfly device, like other microcontrollers, are capable of
switching output state in a matter of nanoseconds. Consequently, transmission line
D-2 Butterfly Microcontroller Handbook

effects can occur in connected PCB tracks, and can cause ground-potential undershoot
and VDD overshoot of the signal concerned to occur.

Example

in a typical small system (with typical PCB composition) having track lengths of 8" with
50pF total loading, a reflection would return in around 4nS which can be very close to the
edge transition time of a low going signal. The reflection would cause undershoot of the
signal together with some 'ringing' around the GND potential. The frequency of 'ringing'
is proportional to the length of the line. The amplitude of ringing is proportional to "the
mismatch" (of impedances).

Reflection transmission times vary according to a tracks’ length, load, position (inside the
PCB or on the surface), cross section, and distance from other layers. Some helpful
formulae to allow calculation of PCB track impedances and propagation characteristics
can be found in appendix C of Reference 1 (see end of this Chapter).

The output drivers on the Butterfly microcontroller have the following characteristics:-

The no load edge speeds are

DOWN: 184ps

UP: 341ps.

The loading factors for the edges are:-

DOWN: 21ps/pf

UP: 53ps/pf

Assuming a PCB made of industry standard commercial grade materials and spacing
rules. Applying the equations in Reference 1 to a Signal X with a 50pF load connected by
16" of track {including spurs}, and 8" worst case single track length, results in:

Track impedance results

(embedded track)-47 Ohms

(surface track) - 90 Ohms

Issue 2.0 Appendix D - PCB Layout Guidelines

Propagation delay results (Tpd)

(embedded) 3.15nS/foot = 2.1nS for 8" of track.
Butterfly Microcontroller Handbook D-3

(surface) 2.5nS/foot = 1.66 nS for 8 " of track.

Note that the signal has to travel both up and back down the track.

The above example is taken from a test system in which a 50 Ohm series resistor placed
at the signal source was found to almost eliminate both undershoot and overshoot.

SUMMARY

Generally, a signal track should be examined for transmission line effects if:-

2 x Tpd x line length > Transition time of the edge

(Tpd = Transmission time of signal along the PCB track in one direction)

To minimise under/over-shoot effects it is recommended that the following guidelines are
noted when implementing a Butterfly/PCB system:

First estimate and analyse whether your system signals will be prone to significant
transmission line effects. For those signals that are, the following steps should be
considered:

A low value resistor, placed in series between the microcontroller output and the PCB
track will minimise both signal-undershoot and overshoot (A value of 50 Ohms has been
found to be highly effective in a specific system, but this will depend upon the particular
signal, the PCB track length, and loading). It is important however to check that if other
nodes of the track are connected to components with significant sink or source currents,
the voltage drop across the series resistor will not compromise the signal integrity.

Reference 1: "Second edition - EMC for Product designers" by Tim Williams,

ISBN 0 7506 24663. Published by Newnes.

Appendix D: PCB Layout Guidelines Issue 2.0
D-4 Butterfly Microcontroller Handbook

	Butterfly Microcontroller Handbook
	TABLE OF CONTENTS i - viii
	Chapter 1 - Introduction
	1.1 BUTTERFLY microcontroller overview
	1.2 Functional Block Description
	1.3 BUTTERFLY System Details

	Chapter 2 - ARM7 Microprocessor
	2.1 Overview
	2.2 Architecture
	2.3 Programmer's Model
	2.4 Instruction Set
	2.5 Instruction Cycle Operations

	Chapter 3 - Diagnostic Broadcast (BBM)
	3.1 Overview

	Chapter 4 - Phase Locked Loop (PLL)
	4.1 Overview
	4.2 Design features
	4.3 Architecture
	4.4 PLL Operational Description
	4.5 Oscillator Operational Description

	Chapter 5 - Power Control (POCO)
	5.1 Overview
	5.2 Architecture
	5.3 Operational Description
	5.4 Programmer’s Model

	Chapter 6 - Programmable Peripheral Interface (PPI...
	6.1 Overview
	6.2 Architecture
	6.3 Operational Description
	6.4 Programmer’s Model
	6.5 Timing relationship diagrams
	6.6 External Interface

	Chapter 7 - Memory/Peripheral Controller (MPC)
	7.1 Overview
	7.2 Architecture
	7.3 Operational Description
	7.4 Programmer’s Model
	7.5 External Interfaces
	7.6 Application Information: Designing a Memory Sy...

	Chapter 135 - Universal Asynchronous Receiver/ Tra...
	135.1 Overview
	135.2 Operational Description
	135.3 Programmer’s Model

	Chapter 9 - Interrupt Controller (INTC)
	9.1 Introduction
	9.2 Architecture
	9.3 Operational Description
	9.4 Programmer’s Model
	9.5 Using the Interrupt Controller

	Chapter 10 - DMA Controller (DMAC)
	10.1 Overview
	10.2 Operational Description
	10.3 Programmer’s Model

	Chapter 11 - Timer/Counter (TIC)
	11.1 Overview
	11.2 Architecture
	11.3 Operational Description
	11.4 Programmer’s Model

	Chapter 12 - Watchdog Timer (WDOG)
	12.1 Overview
	12.2 Architecture
	12.3 Operational Description
	12.4 Programmer’s Model
	12.5 External Interface

	Appendix A - BmILD Bus Operation
	A.1 Introduction

	Appendix B - Physical and Electrical Specification...
	B.1 Device I/O Summary
	B.2 Pin Position Details
	B.3 Package Options
	B.4 Electrical performance Characteristics.

	Appendix C - Further Information
	C.1 Related Documents
	C.2 Worldwide Offices

	Appendix D - PCB Layout Guidelines
	D.1 Considerations regarding Power distribution
	D.2 Considerations regarding PCB track lengths

